• Title/Summary/Keyword: Torsional Frequency

Search Result 280, Processing Time 0.029 seconds

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

TORSIONAL MHD OSCILLATIONS OF THE SUN

  • HIREMATH K. M.;GOKHALE M. H.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.313-314
    • /
    • 1996
  • Assuming that the solar activity and the solar cycle phenomena may be manifestations of global torsional MHD oscillations, we compute the Alfven wave travel times along the field lines in the five models of magnetic field described in the following text. For all these models, we compute standard deviation and it's ratio to mean Alfvenic wave travel times. The last two models yield the smallest relative bandwidth for the frequencies of the MHD oscillations. However, the last model is the only admissible one which can sustain global Alfvenic oscillations with well defined frequency for the fundamental mode

  • PDF

A comparative study of galloping cable and torsional oscillations in suspension bridge (갤럽핑 케이블과 현수교의 뒤틀린 진동에 관한 비교 연구)

  • Hyeyoung Oh
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.3
    • /
    • pp.355-362
    • /
    • 2004
  • This paper presents the common and different results between the galloping cable and torsional oscillations in suspension bridge. Numerical results of the galloping cable and torsional oscillations in suspension bridge are presented by using the second-order Runge Kutta method under the initial conditions. This paper shows that large amplitude solution can coexist with the small amplitude one as the frequency and amplitude of the oscillation change. The differences in symmetry and transient effects are presented.

  • PDF

On the flutter characteristics of separated two box girders

  • Matsumoto, Masaru;Shijo, Rikuma;Eguchi, Akitoshi;Hikida, Tetsuya;Tamaki, Hitoshi;Mizuno, Keisuke
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.281-291
    • /
    • 2004
  • The flutter characteristics of long span bridges are discussed from the point of the unsteady pressure distribution on bridge deck surface during heaving/torsional vibration related to the aerodynamic derivatives. In particular, it is explained that the coupling terms, which consist of $A_1^*$ and $H_3^*$, play a substantial role on the coupled flutter, in comparison with the flutter characteristics of various structural sections. Also the effect of the torsional/heaving frequency ratio of bridge structures on the flutter instability is discussed from the point of the coupling effect between heaving and torsional vibrations.

FEA of Rotary Type Ultrasonic Vibrator using Longitudinal-Torsional Vibration (종-비틀림 진동모드를 이용한 회전형 초음파 진동자의 유한요소 해석)

  • Jeong, Dong-Seok;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.601-604
    • /
    • 2002
  • In this paper bolt-tightened Langevin type vibrator was designed using longitudinal-torsional vibration. These two vibrations make rotary displacement at the end of the vibrator. ANSYS was used to determine shape and dimension of the vibrator in addition to resonant frequency, displacement and stress distribution. This kind of vibrator can be applied for a brakeless and gearless rotary motor which has high torque at low speed.

  • PDF

Suppression Control of the Drivetrain-Oscillations of an Electric Vehicle Using Taguchi Method (다구찌 방법을 이용한 전기자동차 구동계의 진동 억제 제어)

  • Kim, Ho-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.463-468
    • /
    • 2009
  • Torsional oscillations of the drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and an increased stress of the mechanical components. To suppress torsional oscillations, the low pass and notch filters between the torque command from the acceleration pedal and electric motor input torque are suggested. The filter parameters are optimized based on Taguchi method with $L_{18}(3^5)$ orthogonal array. The signal to noise (S/N) ratio mainly depends on slew rate of motor input torque, damping ratio and natural frequency of notch filter. With the proposed suppression control scheme, the S/N ratio is shown to be increased by 4.7dB and the torque overshoot of the drive shaft is reduced to 30%.

Design of a Speed Controller for 2-Mass System Based on Neural Network and Observer (신경 회로망과 관측기에 기반한 2-mass 시스템에서의 속도 제어기 설계)

  • 현대성;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.361-361
    • /
    • 2000
  • In the 2-mass system with flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission as the newly required speed response which is very close to the primary resonant frequency. This vibration makes it difficult to achieve quick responses of speed and disturbance rejection. In this paper, 2-mass system is designed by using pole placement based on optimal control theory fur fast speed response and torsional vibration elimination and using neural network for disturbance rejection in particular. The simulation results show that the proposed controller based on neural network and full state feedback controller has better performance than 려ll state feedback controller, especially fur disturbance rejection.

  • PDF

Vibration Characteristics Analysis of a Piezoelectric Disc or Torsional Transducers (비틀림 진동 변환기용 압전 원판의 진동특성 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1416-1421
    • /
    • 2005
  • This paper presents an analytical approach for the vibration characteristics of a piezoelectric disc for torsional vibration transducers. The characteristic equation of the piezoelectric annular disc has been derived from Gibbs' free energy equations and mechanical and electrical equilibrium. With an anisotropic material properties of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results have been compared with the results obtained by the finite element analysis and experiments and have confirmed the validity of the theoretical analysis.