• Title/Summary/Keyword: Torsional Fracture

Search Result 40, Processing Time 0.024 seconds

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Comparative analysis of torsional and cyclic fatigue resistance of ProGlider, WaveOne Gold Glider, and TruNatomy Glider in simulated curved canal

  • Pedro de Souza Dias;Augusto Shoji Kato;Carlos Eduardo da Silveira Bueno;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte ;Pedro Henrique Souza Calefi ;Rina Andrea Pelegrine
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2023
  • Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

Study of Two Stroke Low Speed Diesel Engine Crankshaft Crack Phenomenon by Torsional Vibration Calculation & Measurement (비틀림 진동 계산 및 측정을 통해 고찰한 선박용 2행정 저속엔진 크랭크축 파단 현상)

  • Moon, Joung-Ha;Kim, Jeong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.452-461
    • /
    • 2014
  • Two stroke low speed diesel engines that have many advantages such as high thermal efficiency and durability have been widely used for marine engine. However, it is also true that many problems have occurred due to the high explosion pressure and severe operating environment. Especially problems of shaft damage etc. intensively occurred due to the phenomenon of crankshaft exceeding the allowable stress, including the shaft vibration of the engine model in the early stage. In this study, the crankshaft fracture phenomenon of early engine model was evaluated and analyzed by using up-to-date torsional vibration calculation program and measurement instrument. And this was numerically shown.

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.

Dynamic Deformation Behavior of Ultra-Fine-Grained Pure Coppers Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 순동의 동적 변형거동)

  • Kim, Yang Gon;Hwang, Byoungchul;Lee, Sunghak;Lee, Chul Won;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.545-553
    • /
    • 2008
  • Dynamic deformation behavior of ultra-fine-grained pure coppers fabricated by equal channel angular pressing (ECAP) was investigated in this study. Dynamic torsional tests were conducted on four copper specimens using a torsional Kolsky bar, and then the test data were analyzed by their microstructures and tensile properties. The 1-pass ECAP'ed specimen consisted of fine dislocation cell structures elongated along the ECAP direction, which were changed to very fine, equiaxed subgrains of 300~400 nm in size as the pass number increased. The dynamic torsional test results indicated that maximum shear stress increased with increasing ECAP pass number. Adiabatic shear bands were not found at the gage center of the dynamically deformed torsional specimen of the 1- or 4-pass ECAP'ed specimen, while some weak bands were observed in the 8-pass ECAP'ed specimen. These findings suggested that the grain refinement according to the ECAP was very effective in strengthening of pure coppers, and that ECAP'ed coppers could be used without serious reduction in fracture resistance under dynamic torsional loading as adiabatic shear bands were hardly formed.

Full scale test and alnalytical evaluation on flexural behavior of tapered H-section beams with slender web

  • Lee, Seong Hui;Choi, Sung Mo;Lee, E.T.;Shim, Hyun Ju
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.389-402
    • /
    • 2008
  • In December 2005, one(A) of the two pre-engineered warehouse buildings in the port of K City of Korea was completely destroyed and the other(B) was seriously damaged to be demolished. Over-loaded snow and unexpected blast of wind were the causes of the accident and destructive behavior was brittle fracture caused by web local buckling and lateral torsional buckling at the flange below rafter. However, the architectural design technology of today based on material non-linear method does not consider the tolerances to solve the problem of such brittle fracture. So, geometric non-linear evaluation which includes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. This study evaluates the structural safety of 4 models in terms of width-thickness ratio and unbraced length using ANSYS 9.0 with parameters such as width-thickness ratio of web, existence/non-existence of stiffener and unbraced length. The purpose of this study is to analyze destructive mechanism of the above-mentioned two warehouse buildings and to provide ways to promote the safety of pre-engineered buildings.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

Study of Axial and Torsional Fatigue Life Prediction Method for Low Pressure Turbine Rotor Steels (저압터빈용 로터강의 이축 피로수명예측법에 관한 연구)

  • Hyun, Jung-Seob;Song, Gee-Wook;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.149-155
    • /
    • 2005
  • The rotating components such as turbine rotors in service are generally subjected to multiaxial cyclic loading conditions. The prediction of fatigue lift for turbine rotor components under complex multiaxial loading conditions is very important to prevent the fatigue failures in service. In this paper, axial and torsional low cycle fatigue tests were preformed for 3.5NiCrMo steels serviced low pressure turbine rotor of nuclear power plant. Several methods to predict biaxial fatigue life such as Tresca, von Mises and Brown & Miller's critical plane approach were evaluated to correlate the experimental results for serviced NiCrMoV steel. The fracture mode and fatigue characteristics of NiCrMoV steel were discussed based on the results of fatigue tests performed under the axial and torsional test conditions. In particular, the Brown and Miller's critical plane approach was found to best correlate the experimental data with predictions being within a factor of 2.

Experimental Study on Detection of Crack for Coupled Bending-torsional Vibrations of L-beams (횡-비틀림 연성진동하는 L형 단면 보의 크랙 검출에 대한 실험적 연구)

  • Son, In-Soo;Lee, Doo-Ho;No, Tae-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations is investigate by theory and experiment. In addition, a method for detection of crack in a cantilever L-beams is presented based on natural frequency measurements. The governing differential equations of a cracked L-beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one sixth order ordinary differential equation in terms of the flexural displacement. Futher, the dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. The crack is assumed to be in the first mode of fracture and to be always opened during vibrations. In this study, the differences between the actual and predicted positions and sizes of crack are less than about 10 % and 39.5 % respectively.