DOI QR코드

DOI QR Code

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress

회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가

  • Received : 2013.08.19
  • Accepted : 2013.11.05
  • Published : 2014.04.01

Abstract

The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

원자력 발전소의 터빈-발전기 시스템과 같이 일정한 토크와 함께 축 진동에 의한 가변 응력이 인가되는 부재의 경우 비틀림 응력에 의한 피로 파괴 거동을 보인다. 따라서 본 연구에서는 터빈-발전기의 터빈 축에 인가하는 비틀림 응력을 측정하고 응력에 의해 발생하는 피로 파괴 거동을 분석하는 것을 목적으로 하였다. 이를 위해 터빈-발전기 시스템과 같은 실험 장치를 제작하고 임의의 부하를 인가하여 다양한 비틀림 응력에 대한 피로 파괴 거동을 평가하였다. 특히 기존의 알려진 피로 거동 평가 방법인 응력-수명, 변형률-수명, 균열성장 평가 방법을 동시에 적용하여 평가를 진행하였다. 부하의 크기가 증가하면서 평가 방법과 무관하게 피로 수명이 감소하는 경향이 확인하였으며 5 kV 부하 인가 시 최대 10배의 피로 수명의 감소가 발생하였다.

Keywords

References

  1. Grigsby, L. L., 2007, Power System Stability and Control, CRC Press, pp. 16-18-16-19.
  2. Placek R. J., Williams R. A., Adams S. L. and Klufas, O., 1984, "Determination of Torsional Fatigue Life of Large Turbine Generator Shafts," EPRI Report EL-3083, USA.
  3. Rosario D. A. and Khalid T., 2005, "Generator Shaft Keyway Cracking Failure Investigation," Proc. 9th EPRI Stream Turbine-Generator Workshop, Denver, Colorado, pp. 1-10.
  4. Raju I. S. and Newman J. C., 1984, "Stress-Intensity Factors for Circumferential Surface Cracks in Pipes and Rods Under Tension and Bending Loads," Fracture Mechanics Vol.17, pp. 1-36.
  5. Nakada M., Noda J. and Miyano Y., 2007, "Fatigue Life Prediction of CFRP Laminates Under Variable Stress Amplitude and Frequency," Key Engineering Material, Vol. 334-335, pp. 445-448. https://doi.org/10.4028/www.scientific.net/KEM.334-335.445
  6. http://www.steel0.com/JIS_S45C.htm.
  7. Kim K. S., Chen X., Han C. and Lee H. W., 2002, "Estimation Methods for Fatigue Properties of Steels Under Axial and Torsional Loading," International Journal of Fatigue, Vol. 24, pp. 783-793. https://doi.org/10.1016/S0142-1123(01)00190-6
  8. Park U. H., Lee H. W., Kim S. J., Lee C. R. and Kim J. H., 2007, "Stochastic Characteristics of Fatigue Crack Growth Resistance of SM45C Steel," International Journal of Automotive Technology, Vol. 8, pp. 623-628.
  9. Bannantine J. A., Comer J. J. and Handrock J. L., 1989, Fundamentals of Metal Fatigue Analysis, Prentice Hall, pp. 189-192.
  10. Tsai J. I., 2008, "Long-Term Fatigue Life Expenditure of Turbine Shafts Owing to Noncharacteristic Harmonics Produced by Slip Energy Recovery Induction Motor Drives," Journal of Solid Mechanics and Materials Engineering, Vol. 2, No. 8, pp. 1146-1160. https://doi.org/10.1299/jmmp.2.1146
  11. McKelvey S. A., Lee Y. L. and Barkey M. E, 2012, "Stress-Based Uniaxial Fatigue Analysis Using Methods Described in FKM-Guideline," Journal of Failure Analysis and Prevention, Vol. 12, pp. 445-484. https://doi.org/10.1007/s11668-012-9599-4
  12. Grigsby L. L., 2007, Power System Stability and Control, CRC Press, pp. 16-18-16-19.