• 제목/요약/키워드: Torque angle

검색결과 754건 처리시간 0.031초

매입형 영구자석 동기전동기의 최적 전류각 제어 (Optimal current angle control method of interior permanent magnet Synchronous Motors)

  • 김명찬;김종구;홍순찬
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발 (Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

수종의 임플란트 토크 조절기의 정확성 비교 (Comparison of Accuracy of Implant Torque Controllers)

  • 김대곤;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제24권2호
    • /
    • pp.157-168
    • /
    • 2008
  • 네 종류의 토크 조절기(전자 토크 조절기($Br{\aa}nemark$), 토크 최대값 제한 장치(Pentaborn), 토크 표시 장치(ITI), 콘트라앵글 토크장치(Anthogyr))를 이용하여 나사의 조임 및 풀림 토크값을 측정하여 적정 토크 값과 토크 조절기를 통해 적용되는 실제 토크값에 대한 차를을 측정하여 토크 조절기의 정확도를 비교, 분석하였다. 풀림토크의 평균값 및 최대값과 최소값을 살펴 본 결과 Pentaborn과 같은 토크 최대값 제한 장치의 정확도가 다른 세 종류의 토크 조절기에 비해 우수한 것으로 나타났으며 15회 정도의 조임과 풀림은 큰 영향을 미치지 않지만 그 이상의 조임과 풀림은 정확한 토크 조절에 나쁜 영향을 미치는 것을 알 수 있었다. 그러므로 토크 조절기가 일정하고 정확한 토크값을 반복적으로 유지하는지 확인 및 교정하면서 임상적으로 적용해야 할 것으로 사료된다.

페라이트 영구자석을 갖는 고속 매입형 영구자석 전동기의 특성해석 및 설계 (Design and Characteristic Analysis for High-speed Interior Permanent Magnet Synchronous Motor with Ferrite Magnet)

  • 박형일;신경훈;양현섭;최장영
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1806-1812
    • /
    • 2016
  • We propose an interior permanent magnet syhchronous motor (IPMSM) with arc-shape ferrite permanent magnets (PMs) as a substitute for the rare-earth permanent magnet, and determine its optimal design through parametric study. First, we use 2D finite element analysis to analyze 4-poles and 6-slots initial model according to performance requirements and design parameters. The current angle of the maximum average torque considered in the analysis is different compared with the current angle of the minimum torque ripple. Thus, the parametric study for optimal rotor design is performed by varying the thickness and the offset radius of the PMs according to current angle. In particular, a narrow bridge is required in conventional IPMSM for reducing flux leakage; however, the increase in cogging torque in the analysis model saturates the narrow bridge (large offset radius). Therefore, we suggest an appropriate shape considering limiting conditions such as DC link voltage, average torque, torque ripple, and cogging torque taking into account performance requirements.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구 (The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator)

  • 이성래
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권1호
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Limeted angle torgue motor의 전자기 과도해석 및 실험 결과의 비교 (A comparison of transient electromagnetic analysis and experiment result of Limeted angle torque motor)

  • 김용훈;권순오;이수웅;장승교;김영복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.898-899
    • /
    • 2015
  • This paper present a transient experiment to verify the performance of limited angle torque motor(LATM) designed using electromagnetic transient analysis. LATM requires access to the transitional state to the torque performance evaluation. Because LATM moves the rotor using a magnetic torque generated by the interaction of the permanent magnet and the armature winding. A separate control is not applied, it is switched on at the same time under the conditions that the current applied to the armature winding. It was compared to the transient analysis of the experimental data of LATM for the verification of approach method in the transitional state.

  • PDF

풍력발전시스템 속도제어의 실험적 고찰 (Investigation of a Speed Control for a Wind Turbin Systsem)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

유도전동기 회전자 시정수 변동에 강인한 간접 벡터제어 (A robust indirect vector control for the rotor time constant variation of induction motors)

  • 강현수;조순봉;현동석
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.365-373
    • /
    • 1996
  • This paper presents the effects of rotor time constant variation and the on-line tuning algorithm of the rotor time constant. If the value of the rotor time constant is set incorrectly, the IFOC (Indirect Field Oriented Control)scheme exhibits deteriorated performance according to the wrong slip command. These variation effects of the rotor time constant are caused by the slip calculator where it is known that the rotor time constant play an important role in the aligned rotor flux. Using the two torque angles (stationary torque angle, rotating torque angle), the variation of the rotor time constant is identified, and the rotor time constant of the controller is tuned to the proper value of the machine. As the result, with the proposed algorithm, the dynamics of the deteriorated IFOC system, where the rotor time constant is varied, is improved. For the purpose of the validity of this proposed algorithm, the computer simulations and the experiments have been performed and the explanation of the results is presented. (author). refs., figs., tab.

  • PDF

전기적인 파라메터 변화에 따른 스위치드 릴럭턴스 전동기의 힘특성 해석 (Analysis of Force Characteristic in Switched Reluctance Motor According to Electric)

  • 전연도;이철직;이택기;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.122-124
    • /
    • 2001
  • In this paper, the influence of electrical parameters such as the turn-on and turn-off angle on the torque and force characteristics is investigated for the reduction of the torque ripple which is main source of vibration and noise in switched reluctance motor (SRM). The four different types of the turn-on angle are set to the section of rising inductance profile respectively. The optimum turn-on angle is proposed for the acquisition of the flat current shape minimizing the torque ripple. 2D finite element method (FEM) considering the iron saturation and the actual switching circuit of the SRM drive is applied for the dynamic analysis. The simulation results of phase current and torque are also compared to the experimental results.

  • PDF