• Title/Summary/Keyword: Torque Observer

Search Result 312, Processing Time 0.023 seconds

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

A Study on the Design of a Nonlinear Speed Controller and a Fuzzy Load Torque Observer for a PM Synchronous Motor (영구자석 동기전동기의 비선형 속도 제어기 및 퍼지토크관측기 설계에 대한 연구)

  • Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.282-287
    • /
    • 2010
  • This paper proposes a new nonlinear speed controller with a fuzzy load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). The LMI conditions are derived for the existence of the proposed nonlinear speed controller and fuzzy load torque observer, and the LMI parameterization to obtain the gain matrices of the controller and observer is given. In this paper, to verify the performance of the proposed nonlinear speed controller and fuzzy load torque observer, and the simulation and experimental results are demonstrated under motor parameter and load torque variations.

Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • Go, Jong-Seon;Lee, Yong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

High performance speed control of induction motor using load torque observer (부하 토오크 관측기를 이용한 유도전동기의 고성능 속도제어)

  • 이성근;임영배;노창주;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 1997
  • In this thesis, a new speed control algorithm based on the load torque observer theory is pro¬posed for the high performance speed control of a voltage source inverter to drive a 3 - phase induction motor. The proposed system becomes robust against disturbances using a feed -- for¬ward control of the load torque estimated at load torque observer. Computer simulation and experimental works using the proposed control confirm that transient response for the varia¬tion ofload torque becomes improved, compared with the conventional PI control method.

  • PDF

Robust Force Control of Pneumatic Manipulator (공압 매니퓰레이터의 강인 힘제어)

  • Park, Jeong-Gyu;Noritsugu, Toshiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.540-552
    • /
    • 1996
  • In this paper, a compensation method of disturbance using a disturbance observer is proposed for a force control of a pneumatic robot manipulator. The generated torque by a pneumatic actuator can be estimated based on the pressure signals. The inner torque control system is constructed by feeding back the generated torque to improve the dynamic characteristics of the actuator. In order to reduce the influence of disturbances comprising friction torque, parameter variations of plant and environment and so on, the reaction torque control system is constructed with a disturbance observer which estimates the disturbances based on the reference input to the inner torque control system and the reaction torque sensed with a forced sensor. From some simulations and experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque and the parameter change of object in the force control of a pneumatic robot manupulator.

Robust Speed Control of Vector Controlled PMSM with Load Torque Observer (부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Won-Oh;Yoon, Myung-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF

A Improved Programmable-Dynamometer Control For Motor Drive Systems Testing (모터 구동시스템 시험을 위한 개선된 프로그램어블 다이나모메터 제어)

  • 김길동;박현준;조정민;전기영;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.211-220
    • /
    • 2003
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for meter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is Proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.