• Title/Summary/Keyword: Torque Control Method

Search Result 1,199, Processing Time 0.028 seconds

Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control (Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감)

  • Lee, Hyun-Chang;Jun, Ho-Ik;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

A Study on Novel High Performance SRM Drive (새로운 고성능 SRM 운전방식에 관한 연구)

  • 오인석;구인수;박한웅;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.399-406
    • /
    • 1998
  • This paper proposes an instantaneous torque control method for the high performance SRM drive. In first, we e establish SRM model with the characte1istics of the torque. phase current and rotor position which were measured in t the experimental SRM. Based on this model. the reference torque waveform to minimize torque ripple is obtained by t the control of resultant torque considering phase torque overlap according to the variation of load and speed. And the r reference current waveform for the tracking of reference torque are decided. The control method for tracking the r reference current is used the delta modulation technique. The proposed method is validated by the comparing with S simulation and experimental results.

  • PDF

PIR Speed Control Method of AC Motors Considering Time Delay in Speed Information

  • Lee, Jung-Ho;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2289-2297
    • /
    • 2017
  • Applying a periodic load torque to an AC motor generates a ripple, which is synchronized to the frequency of the periodic load torque, at the speed of the motor. Consequently, numerous studies have focused on reducing the speed ripple caused by the load torque. However, it is difficult to reduce the speed ripple when there is a time delay in acquiring speed information, such as that from a sensorless control. Therefore, we propose a speed control method for reducing speed ripples caused by a periodic load torque when there is a time delay in acquiring the speed information. The proposed method is verified by conducting simulations using the Simulink program from MATLAB, and by applying the method to an actual motor in which speed ripples occur due to a periodic load torque that is synchronized with the speed of the motor.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

A Study on Reduction of Torque Pulsating for BLDCM Using CDTP Control Method (CDTP 기법을 이용한 BLDC 전동기의 토크맥동 저감에 관한 연구)

  • Kang, Byoung-Hee;Shin, Woo-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • This paper studies the torque characteristics of CDTP controlled BLDCM with various back-EMF waveforms. We propose a CDTP method to suppress torque pulsation due to commutation time and point. It is adopted to control the BLDCM with real back-EMF waveforms through the Hague's method for minimizing torque ripple. Real back-EMF waveforms are produced with a magnetic fringing factor and crest width of back-EMF. The performance and characteristics of the proposed control method are analyzed by simulation and verified through experimental results.

DTC-PWM control method of PMSM using the flux-torque Band (PMSM의 자속-토크 밴드를 고려한 DTC-PWM 제어 방식)

  • Kim, SeungJun;Park, JunHwi;Kim, Ji-won;Lee, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.63-65
    • /
    • 2018
  • This paper presents a DTC-PWM(Direct Torque Control-Pluse Width Modulation) method of PMSM(Permanent Magnet Synchronous Motor) using the flux-torque hysteresis band. In order to keep the flux and torque error of the PMSM within the hysteresis band, the optimal PWM duty ratio is calculated by the error of the flux and torque with the flux and torque vector of the selected voltage vector. According to the flux duty ratios and the torque duty ratios, the optimized duty ratio to reduce the errors is selected by the calculated duty ratios. In the proposed method, the selected voltage vector is divided into d-q axis components with a simple method. And the flux duty ratios and torque duty ratios are estimated by the applied voltage vector. The proposed DTC-PWM for PMSM was verified by computer simulation.

  • PDF

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

A High Performance Pressure Control of SR Type Hydraulic Pump System using Direct Instantaneous Torque Control Method (직접순시토크 제어에 의한 SR구동형 유압 펌프시스템의 고성능 압력제어)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1751-1756
    • /
    • 2007
  • This paper presents a high performance pressure control scheme for SR(Switched Reluctance) type hydraulic oil pump using DITC(Direct Instantaneous Torque Control). SR drive has a good feature for pump applications due to a high efficiency, high speed and high torque characteristics. But, SR drive has high torque ripple in commutation region. So, the pump pressure variation is high in the region. In order to reduce the pressure variation, DITC combined with pressure control scheme is presented in this paper. A simple PI controller with flow and pressure limit, generates a reference torque to keep the constant actual pump pressure. The direct torque controller of SR drive generates inverter switching signals according to a control rule and a torque estimator. Computer simulation and experiemtal results show the validation of the proposed control scheme.