• Title/Summary/Keyword: Topological Transformation

Search Result 40, Processing Time 0.023 seconds

TOPOLOGICAL METHOD DOES NOT WORK FOR FRANKEL-MCDUFF CONJECTURE

  • Kim, Min Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In dealing with transformation group, topological approach is very natural. But, it is not sufficient to investigate geometric properties of transformation group and we need geometric method. Frankel-McDuff Conjecture is very interesting in the point that it shows struggling between topological method and geometric method. In this paper, the author suggest generalized Frankel-McDuff conjecture as a topological version of the conjecture and construct a counterexample for the generalized version, and from this we assert that topological method does not work for Frankel-McDuff Conjecture.

  • PDF

A Topological Transformation and Hierarchical Compensation Capacitor Control in Segmented On-road Charging System for Electrical Vehicles

  • Liu, Han;Tan, Linlin;Huang, Xueliang;Guo, Jinpeng;Yan, Changxin;Wang, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1621-1628
    • /
    • 2016
  • Experiencing power declines when the secondary coil is at the middle position between two primary coils is a serious problem in segmented on-road charging systems with a single energized segmented primary coil. In this paper, the topological transformation of a primary circuit and a hierarchical compensation capacitor control are proposed. Firstly, the corresponding compensation capacitors and receiving powers of different primary structures are deduced under the condition of a fixed frequency. Then the receiving power characteristics as a function of the position variations in systems with a single energized segmented primary coil and those with double segmented primary coils are analyzed comparatively. A topological transformation of the primary circuit and hierarchical compensation capacitor control are further introduced to solve the foregoing problem. Finally, an experimental prototype with the proposed topological transformation and hierarchical compensation capacitor control is carried out. Measured results show that the receiving power is a lot more stable in the movement of the secondary coil. It is a remarkable fact that the receiving power rises from 10.8W to 19.2W at the middle position between the two primary coils. The experimental are in agreement with the theoretical analysis.

Fundamental Groups of a Topological Transformation Group

  • Chu, Chin-Ku;Choi, Sung Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.103-113
    • /
    • 1991
  • Some properties of a path space and the fundamental group ${\sigma}(X,x_0,G)$ of a topological transformation group (X, G, ${\pi}$) are described. It is shown that ${\sigma}(X,x_0,H)$ is a normal subgroup of ${\sigma}(X,x_0,G)$ if H is a normal subgroup of G ; Let (X, G, ${\pi}$) be a transformation group with the open action property. If every identification map $p:{\Sigma}(X,x,G)\;{\longrightarrow}\;{\sigma}(X,x,G)$ is open for each $x{\in}X$, then ${\lambda}$ induces a homeomorphism between the fundamental groups ${\sigma}(X,x_0,G)$ and ${\sigma}(X,y_0,G)$ where ${\lambda}$ is a path from $x_0$ to $y_0$ in X ; The space ${\sigma}(X,x_0,G)$ is an H-space if the identification map $p:{\Sigma}(X,x_0,G)\;{\longrightarrow}\;{\sigma}(X,x_0,G)$ is open in a topological transformation group (X, G, ${\pi}$).

  • PDF

Sheet Modeling and Transformation of Sheet into Solid Based on Non-manifold Topological Representation (바다양체 위상 표현을 바탕으로 한 박판 형상 모델링 및 솔리드로의 변환)

  • Lee, S.H.;Lee, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.100-114
    • /
    • 1996
  • In order to create a solid model more efficiently for a plastic or sheet metal product with a thin and constant thickness, various methods have been proposed up to now. One of the most typical approaches is to create a sheet model initially and then transform it into a solid model automatically for a given thickness. The sheet model as well as the transitive model in sheet modeling procedure is a non-manifold model. However, the previous methods adopted the boundary representations for a solid model as their topological framework. Thus, it is difficult to represent the exact adjacency relationship between topological entities and to implement the topological operations for sheet modeling and the transformation procedure of a sheet into a solid. In this paper, we proposed a sheet modeling system based on a non-manifold topological representation which can represent solids, sheets, wireframes, and their mixture. A set of generalized Euler operators for non-manifold topology as well as the sheet modeling capabilities including adding, bending, and punching functions are provided for easy modeling of sheet objects, and they are perfomed interactively with a two dimensional curve editor. Once a sheet model is completed, it can be transformed into a solid automatically. The transformation procedure is composed of the offset functions and the Boolean operations of sheet models, and it is even more comprehensive and easier to be implemented than the precious methods.

  • PDF

CAD Data Conversion to a Node-Relation Structure for 3D Sub-Unit Topological Representation (3차원 위상구조 생성을 위한 노드 - 관계구조로의 CAD 자료 변환)

  • Stevens Mark;Choi Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.188-194
    • /
    • 2006
  • Three-dimensional topological data is essential for 3D modeling and application such as emergency management and 3D network analysis. This paper reviewed current 3D topological data model and developed a method to construct 3D topological node-relation data structure from 2D computer aided design (CAD) data. The method needed two steps with medial axis-transformation and topological node-relation algorithms. Using a medial-axis transformation algorithm, the first step is to extract skeleton from wall data that was drawn polygon or double line in a CAD data. The second step is to build a topological node-relation structure by converting rooms to nodes and the relations between rooms to links. So, links represent adjacency and connectivity between nodes (rooms). As a result, with the conversion method 3D topological data for micro-level sub-unit of each building can be easily constructed from CAD data that are commonly used to design a building as a blueprint.

A Study on the Concept of Topological Space shown Folding in Architecture (접힘 건축에 나타난 위상기하학적 공간 개념에 관한 연구)

  • 황태주
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.3
    • /
    • pp.69-75
    • /
    • 2004
  • Since 1990s, several rising western architects have been moving their theoretical background from the modern paradigm to new science and philosophy. Architectural spaces are based on the philosophy and science of their own age and the architectural theories made by them. And specially, it seems that topological spaces are different to theoretical backgrounds from idealized spaces of modern architecture. From these backgrounds, this study was performed to search for the spacial relationship and characteristics shown in the recently folding architecture and the results of this study that starts this purpose are as follows. First, the architecture that introduced by the theory of topology has appeared as the circulation forms like as Mobius band or Klein bottle, and was made the space fused with structure pursuing liquid properties of matter. As follows, second, the concept of topological space made the division of traditional concept of floor, wall, ceiling disappeared and had built up the space by continual transformation. Third, about the relationship between two spaces in topological space, the two spaces were happened by transformation of these and they have always continuity and the same quality.

A Systematic and Efficient Approach for Data Association in Topological Maps for Mobile Robot using Wavelet Transformation

  • Doh, N.L.;Lee, K.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2017-2022
    • /
    • 2004
  • Data association is a process that matches a recent observation with known data set, which is used for the localization of mobile robots. Edges in topological maps have rich information which can be used for the data association. However, no systematic approach on using the edge data for data association has been reported. This paper proposes a systematic way of utilizing the edge data for data association. First, we explain a Local Generalized Voronoi Angle(LGA) to represent the edge data in 1-dimension. Second, we suggest a key factor extraction procedure from the LGA to reduce the number by $2^7-2^8$ times, for computational efficiency using the wavelet transformation. Finally we propose a way of data association using the key factors of the LGA. Simulations show that the proposed data association algorithm yields higher probability for similar edges in computationally efficient manner.

  • PDF

An Efficient Representation of Edge Shapes in Topological Maps

  • Doh, Nakju Lett;Chung, Wan-Kyun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.655-666
    • /
    • 2007
  • There are nodes and edges in a topological map. Node data has been used as a main source of information for the localization of mobile robots. In contrast, edge data is regarded as a minor source of information, and it has been used in an intuitive and heuristic way. However, edge data also can be used as a good source of information and provide a way to use edge data efficiently. For that purpose, we define a data format which describes the shape of an edge. This format is called local generalized Voronoi graph's angle (LGA). However, the LGA is constituted of too many samples; therefore, real time localization cannot be performed. To reduce the number of samples, we propose a compression method which utilizes wavelet transformation. This method abstracts the LGA by key factors using far fewer samples than the LGA. Experiments show that the LGA accurately describes the shape of the edges and that the key factors preserve most information of the LGA while reducing the number of samples.

  • PDF

Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane (다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션)

  • Ham, Seung-Ho;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.261-270
    • /
    • 2009
  • We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

Design of Three Dimensional Spatial Topological Relational Operators (3차원 공간 위상 관계 연산자의 설계)

  • Kim, Sang-Ho;Kang, Gu;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.211-220
    • /
    • 2003
  • As Geographic Information Systems represent three dimensional topological information, The Systems provide accurate and delicate services for users. In order to execute three dimensional topological operations, a dimensional transformation and heterogeneous spatial models should be used. However, the existing systems that use the dimensional transformation and the heterogeneous models, is not only difficult to operate the spatial operators, but also happened to support non-interoperability. Therefore, in order to solve the problems, we proposed three dimensional spatial object models that supported two dimensional object models and implemented them to show validity of the proposed models. When designing the three dimensional topological operators, we used 3DE-9IM which extended DE-9IM to support three dimensional concepts, and implemented operators on the component environment with object oriented concepts. The proposed three dimensional spatial object models and topological operators can support interoperability between systems, and execute spatial queries efficiently on three dimensional spatial objects.