• Title/Summary/Keyword: Topographic Characteristics

Search Result 386, Processing Time 0.025 seconds

The First Discovery of Quaternary Fault in the Western Part of the South Yangsan Fault - Sinwoo Site (양산단층 남부 이서 지역에서 최초로 발견된 제4기 단층 - 신우지점)

  • Choi, Sung-Ja;Ghim, Yong Sik;Cheon, Youngbeom;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • During the detailed geological survey around the southern Yangsan Fault, we newly found a Quaternary fault outcrop, which cuts unconsolidated sediments. The fault named the Sinwoo site, located in the Sinwoo pasture, Miho-ri, Duseo-myeon, Ulsan metropolitan city, is the first discovered Quaternary fault near the western part of the south Yangsan Fault. In this study, we provide information on characteristics of fault geometry and unconsolidated sediment at Sinwoo site based on the analysis data of topography, drainage, and lineament around the study site. The fault site is situated at pediment slope, but fan-shaped middle terrace, as well as thick sediment exposed at low terrace, indicates that the unconsolidated sediments have been deposited in the alluvial fan environment. The drainage develops to the third-order drainage system, and the first and the second drainage system meet at right angles to each other and form a radial drainage pattern. In addition, the NE-SW direction lineaments can be identified on the basis of the curvature of the river and the step of the topographic relief, running over the Sinwoo site. The fault of $N30-35^{\circ}E/79-82^{\circ}SE$ shows ~ 5.8 m apparent vertical offset and dominantly reverse-slip sense based on slickenline, rotation of pebbles, and drag folding at footwall. However, some discontinuous sediments observed in the footwall are interpreted as fissure-filling materials due to the strike-slip movement. Now, we are under multidisciplinary investigations of additional field survey and age dating in order to determine the evolution of Sinwoo site fault during the Quaternary.

Weights for Evaluation items of Conformity index of Bird breeding sites on the West and South coasts of Korea (서·남해 연안성 조류번식지 적합성지수 평가항목 가중치 설정)

  • Kim, Chang-Hyeon;Kim, Won-Bin;Kim, Kyou-Sub;Lee, Chang-Hun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.40-48
    • /
    • 2023
  • This study is part of a foundational research effort aimed at developing a suitability index for breeding grounds related to avian activities along the domestic South and West coasts, including islands. Focus Group Interviews (FGI) and Analytic Hierarchy Process (AHP) analyses were conducted. The results are as follows. First, as a result of determining the value of the suitability of coastal bird breeding sites, the 'Natural Value(0.763)' was higher than the 'Artificial Value(0.237)'. Other artificial values were identified as sub-ranked except for 'Protected Areas' to ensure continuous integrity of breeding spaces. Second, as a result of re-establishing the 25 evaluation items classified in the two-time FGI as higher concepts, nine natural values and five artificial values were finally selected as a total of 14. Third, the results of the mid-classification evaluation of the importance of the suitability of coastal bird breeding sites were identified in the order of 'Ecological Value(0.392)', 'Topographic Value(0.251)', 'Passive Interference(0.124)', 'Geological Value(0.120)', and 'Active Interference(0.113)'. Fourth, the results of the priority of evaluation items of coastal bird breeding sites were in the order of 'Vegetation Distribution (0.187)', 'Area of Mudflats(0.118)', 'Presence or Absence of Mudflats(0.092)', 'Appearance of Natural Enemies(0.087)', 'Protected Areas(0.08)', 'Island Area (0.069)', 'Over-Breeding devastation(0.064)', 'Soil Composition Ratio(0.056)', 'Distance from Land(0.054)', 'Ocean farm area (0.045)', 'Cultivated land area(0.041)', 'Cultivation behavior(0.038)', 'Angle of the Surface(0.036)', and 'Land Use(0.033)'. It is judged that the weighting result value of the evaluation items derived in this study can be used for priority evaluation focusing on the coastal bird breeding area space. However, it seems that the correlation with the unique habitat suitability of bird individuals needs to be supplemented, and spatial analysis research incorporating species-specific characteristics will be left as a future task.

A Study on the Consideration of the Locations of Gyeongju Oksan Gugok and Landscape Interpretation - Focusing on the Arbor of Lee, Jung-Eom's "Oksan Gugok" - (경주 옥산구곡(玉山九曲)의 위치비정과 경관해석 연구 - 이정엄의 「옥산구곡가」를 중심으로 -)

  • Peng, Hong-Xu;Kang, Tai-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.26-36
    • /
    • 2018
  • This study aims to examine the characteristics of landscape through the analysis of location and the landscape of Gugok while also conducting the empirical study through the literature review, field study, and digital analysis of the Okgung Gugok. Oksan Gugok is a set of songs set in Ogsan Creek(玉山川)or Jagyese Creek(紫溪川, 紫玉山), which flows in front of the Oksan Memorial Hall(李彦迪), which is dedicated to the Lee Eong-jeok (李彦迪). We first ascertained the location and configuration of Oksan Gogok. Second, we confirmed the accurate location of Oksan Gogok by utilizing the digital topographic map of Oksan Gogok which was submitted by Google Earth Pro and Geographic Information Center as well as the length of the longitude of the gravel measured by the Trimble Juno SB GPS. Through the study of the literature and the field investigation, The results of the study are as follows. First, Yi Eonjeok was not a direct composer of Oksan Gugok, nor did he produce "Oksan Gugokha(Music)". Lee Ia-sung(李野淳), the ninth Youngest Son of Tweo-Kye, Hwang Lee, visited the "Oksan Gugokha" in the spring of 1823(Sunjo 23), which was the 270th years after the reign of Yi Eonjeok. At this time, receiving the proposal of Ian Sung, Lee Jung-eom(李鼎儼), Lee Jung-gi(李鼎基), and Lee Jung-byeong(李鼎秉), the descendants of Ian Sung set up a song and created Oksan Gugok Music. And the Essay of Oksan Travel Companions writted by Lee Jung-gi turns out being a crucial data to describe the situation when setting up the Ok-San Gugok. Second, In the majority of cases, Gogok Forest is a forest managed by a Confucian Scholar, not run by ordinary people. The creation of "Oksan Bugok Music" can be regarded as an expression of pride that the descendants of Yi Eonjeok and Lee Hwang, and next generation of several Confucian scholars had inherited traditional Neo-Confucian. Third, Lee Jung-eom's "Oksan Donghaengki" contains a detailed description of the "Oksan Gugokha" process and the process of creating a song. Fourth, We examined the location of one to nine Oksan songs again. In particular, eight songs and nine songs were located at irregular intervals, and eight songs were identified as $36^{\circ}01^{\prime}08.60^{{\prime}{\prime}}N$, $129^{\circ}09^{\prime}31.20^{{\prime}{\prime}}E$. Referring to the ancient kingdom of Taojam, the nine-stringed Sainam was unbiased as a lower rock where the two valleys of the East West congregate. The location was estimated at $36^{\circ}01^{\prime}19.79^{{\prime}{\prime}}N$, $129^{\circ}09^{\prime}30.26^{{\prime}{\prime}}E$. Fifth, The landscape elements and landscapes presented in Lee Jung-eom's "Oksan Gugokha" were divided into form, semantic and climatic elements. As a result, Lee Jung-eom's Cho Young-gwan was able to see the ideal of mountain water and the feeling of being idle in nature as well as the sense of freedom. Sixth, After examining the appearance of the elements and the frequency of the appearance of the landscape, 'water' and 'mountain' were the absolute factors that emphasized the original curved environment at the mouth of Lee Jung-eom. Therefore, there was gugokga can gauge the fresh ideas(神仙思想)and retreat ever(隱居思想). This inherent harmony between the landscape as well as through the mulah any ideas that one with nature and meditation, Confucian tube.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

The Value and Growing Characteristics of the Dicentra Spectabilis Community in Daea-ri, Wanju-gun, Jeollabuk-do as a Nature Reserve (전북 완주군 대아리 금낭화 Dicentra spectabilis 군락지의 천연보호구역적 가치와 생육특성)

  • Lee, Suk Woo;Rho, Jae Hyun;Oh, Hyun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.72-105
    • /
    • 2011
  • This study explores the value of the Dicentra spectabilis community as a nature reserve in provincial forests at San 1-2, Daea-ri, Dongsang-myeon, Wanju-gun, Jellabuk-do, also known as Gamakgol, while defining the appropriateness of its living environment and eventually providing basic information to protect this area. For these reasons, we investigated 'morphological and biological features of Dicentra spectabilis' and the 'present situation and problems of designing a herbaceous nature reserve in Korea.' Furthermore, we researched and analyzed the solar, soil and vegetation condition here through a field study in order to comprehend its nature reserve value. The result is as follows. According to the analytic result for information on the domestic wild Dicentra spectabilis community, it is evenly spread throughout mountainous areas, and there is one particularly outstanding in size in Wanju Gamakgol. Upon the findings from literature and the field study about its dispersion, Gamakgol has been discovered as an ideal district for Dicentra spectabilis since it meets all the conditions this plant requires to grow vigorously, such as a quasi-high altitude and rich precipitation during its period of active growth duration in May. Dicentra spectabilis grows in rocky soil ranging from 300~375m above sea level, 344.5m on average, towards the north, northwest and dominantly in the northeast. The mean inclination degree is $19.5^{\circ}$. Also, upon findings from analyzing solar conditions, the average light intensity during its growth duration, from Apr. to Aug., is 30,810lux on average and it tends to increase, as it gets closer to the end. This plant requires around 14,000~18,000lux while growing, but once bloomed, fruits develop regardless of the degree of brightness. The soil pH has shown a slight difference between the topsoil, at 5.2~6.1, and subsoil, at 5.2~6.2. Its mean pH is 5.54 for topsoil and 5.58 for subsoil. These results are very typical for Dicentra spectabilis to grow in, and other comparative areas also present similar conditions. Given the facts, the character of the soil in Gamakgol has been evaluated to have high stability. Analysis of its vegetation environment shows a wide variation of taxa numbering from 13 to 52 depending on area. The total number of taxa is 126 and they are a homogenous group while showing a variety of species as well. The Dicentra spectabilis community in the Daea-ri Arboretum is an herbaceous community consisting of dominantly Dicentra spectabilis, Cardamine leucantha, Boehmeria tricuspi and Impatiens textori while having many differential species such as Impatiens textori, Pueraria thunbergiana, Rubus crataegifolius vs Staphylea bumalda, Securinega suffruticosa, and Actinidia polygama. It suggests that it is a typical subcolony divided by topographic features and soil humidity. Considering the above results on a comprehensive level, this area is an excellent habitat for wild Dicentra spectabilis providing beautiful viewing enjoyment. Additionally, it is the largest wild colony of Dicentra spectabilis in Korea whose climate, topography, soil conditions and vegetation environment can secure sustainability as a wild habitat of Dicentra spectabilis. Therefore, We have determined that the Gamakgol community should be re-examined as natural asset owing to its established habitat conditions and sustainability.

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF