• 제목/요약/키워드: Top-N 추천

검색결과 33건 처리시간 0.022초

협력적 필터링 알고리즘의 예측 선호도 순위 일치와 ToP-N 추천에 관한 연구 (A Study on the Relation of Top-N Recommendation and the Rank Fitting of Prediction Value through a Improved Collaborative Filtering Algorithm)

  • 이석준;이희춘
    • 한국산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.65-73
    • /
    • 2007
  • 본 연구는 추천시스템에서 협력적 필터링 알고리즘인 이웃기반의 협력적 필터링 알고리즘과 대응평균 알고리즘의 선호도 예측 결과를 이용하여 예측결과의 순위 일치성과 실제 고객에 상품 추천인 Top-N 추천의 정확도에 대하여 연구하였다. 연구결과 대응평균 알고리즘에 의한 선호도 예측 정확도의 순위 일치성과 예측치를 이용한 Top-N 추천의 정확도가 기존의 이웃기반의 협력적 필터링 알고리즘의 결과보다 우수함을 알 수 있었다. 이는 협력적 필터링 추천시스템에서 대응평균 알고리즘을 이용한 선호도 예측 결과를 이용하여 고객에게 상품추천을 하는 것이 이웃기반의 협력적 필터링 알고리즘을 이용하는 것보다 더 효과적이며 추천시스템에 대한 고객의 만족을 향상시킬 수 있을 것으로 기대된다.

  • PDF

상위 N개 항목의 추천 정확도 향상을 위한 효과적인 선호도 표현방법 (An Effective Preference Model to Improve Top-N Recommendation)

  • 이재웅;이종욱
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.621-627
    • /
    • 2017
  • 협업필터링은 사용자들이 평가한 항목들의 유사성을 기반으로 평가되지 않은 항목을 효과적으로 추천해주는 기법이다. 기존에는 사용자가 평가하지 않은 항목 중 상위 N개 항목의 추천 정확도를 높이기 위하여 사용자의 항목의 대한 상대적 선호도를 반영하는 쌍 기반 선호도(pair-wise preference)와 목록 기반 선호도(list-wise preference)가 제안되었다. 하지만 이러한 방법들은 사용자가 평가한 항목 간의 상대적인 선호도를 표현하는데 한계가 있으며, 각각의 항목들의 중요도를 반영할 수 없는 단점이 있다. 본 논문에서는 유사도 및 순위 값을 계산할 때 평점 선호도 표현 방법과 역 사용자 빈도수(inverse user frequency)를 이용하여 사용자의 잠재된 선호도를 표현하는 새로운 방법을 제안한다. 제안 방법을 메모리 기반 협업필터링에 적용하여 비교한 결과 기존 방법보다 최대 2배 이상 정확도가 향상되는 것을 확인할 수 있었다.

메타데이터를 이용한 음악 추천 기법 (Music Recommendation Technique Using Metadata)

  • 이혜인;윤성대
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.75-78
    • /
    • 2018
  • 최근 디지털 음반시장의 성장으로, 들을 수 있는 음악의 양이 기하급수적으로 늘어나고 있다. 이로 인해 온라인 음원 서비스 이용자들은 마음에 드는 음악을 선택하는데 어려움을 겪고, 많은 시간을 낭비하게 되었다. 본 논문에서는 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용하여 사용자의 선호도를 예측하고 선호도가 높은 Top-N개의 음악을 최종적으로 추천한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.

  • PDF

협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법 (Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering)

  • 김형일;김준태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권6호
    • /
    • pp.542-553
    • /
    • 2005
  • 추천 시스템은 사용자의 선호도를 분석하고, 아이템에 대한 사용자의 선호도를 예측하여 아이템을 추천하는 시스템이다. 다양한 추천 기법 중에 협동적 여과(collaborative filtering)는 상용화된 시스템에성공적인 적용이 이루어진 기법이다. 그러나 협동적 여과는 데이타의 희소성 문제(sparseness problem)와초기 추천 문제(cold-start problem)에 대해 취약점을 가 고 있다. 만약 매우 적은 양외 선호도 데이타가존재하면 많은 유사 사용자를 찾기 어려우며, 이것은 추천 성능을 저하시키는 요인으로 작용한다. 또한 선호도 정보가 없는 새로운 사용자에게는 아이템을 전혀 추천할 수 없는 문제가 발생한다. 본 논문에서는 사용자와 아이템에 대한 추가 속성 정보를 통합하여 협동적 여과의 희소성 문제와 초기 추천 문제를 해결하 고 추천 성능을 향상시키는 기법을 제안한다. 본 논문에서 제안하는 기법은 추가 속성 정보의 확률분포를 이용하여 알려지지 않은 선호도 값을 예측함으로써 선호도 데이타를 변경 고, 변경된 선호도 데이타에 협동적 여과를 적용하여 top-N 추천을 생성하는 것이다. 이와 같은 선호도 데이타 변경 기법을 데이타 블러링(data blurring)이라 한다. 몇 가지 실험 결과를 통해 제안된 기법의 효과를 확인하였다.

암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링 (Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.495-507
    • /
    • 2019
  • 데이터 희소성은 추천 시스템의 주요 과제 중 하나이다. 추천 시스템에서는, 일부분만 관찰된 데이터이고 다른 부분은 데이터가 누락된 대용량 데이터를 포함하고 있다. 대부분의 연구에서는, 데이터 세트에서 무작위로 데이터가 누락되었다고 가정하고, 관찰된 데이터만을 사용하여 추천 모델을 학습함으로써 사용자에게 항목을 추천하고 있다. 그러나, 실제로는 누락된 데이터는 무작위로 손실되었다고 볼 수 없다. 본 연구에서는, 누락 된 데이터를 사용자적 관심의 부정적인 예라고 간주하였다. 또한, 3가지 샘플 접근 방식을 SVD++ 알고리즘과 결합하여 SVD++_W, SVD++_R 그리고 SVD++_KNN 알고리즘을 제안하였다. 실험결과를 통하여, 제안한 3가지 샘플 접근 방식이 기존의 기본적인 알고리즘 보다 Top-N 추천에서 정확성과 회수율을 효과적으로 향상시킬 수 있다는 것을 보였다. 특히, SVD++_KNN 가 가장 우수한 성능을 보였는데, 이는 KNN 샘플 접근 방식이 사용자적 관심의 부정적인 예를 추출하는데 가장 효율적인 방법이라는 것을 보여주었다.

체류시간을 고려한 여행 일정 추천 시스템 (Personalized Itinerary Recommendation System based on Stay Time)

  • 박세화;박석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.38-43
    • /
    • 2016
  • 최근 교통 기술의 발전과 여가생활에 대한 관심이 늘어남에 따라 여행이 주요 여가 활동으로 자리 잡고 있다. 또한, 스마트폰이나 태블릿PC와 같이 GPS를 탑재한 모바일 기기 보급으로 인해 사용자의 위치를 실시간으로 수집하는 것이 가능해졌다. 이런 환경을 바탕으로 번거로운 여행 일정 계획을 대신 수립해주는 여행 일정 추천 시스템에 대한 연구가 활발하게 진행되었다. 그러나 기존의 연구들은 사용자들의 비용이나 시간에 대한 제약사항을 고려해 짧은 경로를 포함하는 여행 일정을 추천하거나 여행 목적지에서 가장 인기 있는 지역을 가장 많이 포함하는 일정을 추천하는 것을 목적으로 하기 때문에 개인의 만족도를 높이기 위한 개인화된 여행 일정 추천시스템에 대한 연구는 많지 않았다. 따라서 본 연구에서는 사용자들의 만족도를 높이기 위한 개인화 서비스 연구의 일환으로 그 동안 다른 연구에서는 간과되었던 사용자들의 체류시간을 고려한 여행 일정 추천 시스템을 제안한다.

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

고랭지 배추 재배농가의 시비실태 조사연구 (Status of Fertilizer Applications in Farmers' Field for Summer Chinese Cabbage in Highland)

  • 이춘수;이계준;이정태;신관용;안재훈;조현준
    • 한국토양비료학회지
    • /
    • 제35권5호
    • /
    • pp.306-313
    • /
    • 2002
  • 고랭지 여름배추 재배농가의 시비실태를 조사하여 시비개선 기초자료로 활용코져 1999~2001년에 58농가를 대상으로 청취조사한 결과, 3요소비료는 추천시비량에 비하여 질소 1.4배, 인산 2.4배, 칼리 2.0배를 시용하고 있었으며, 퇴비는 가축분퇴비 위주로 $9,920kg\;ha^{-1}$을 사용하고 있어 추천량보다도 감비하고 있는 반면, 석회질비료는 $2,160kg\;ha^{-1}$로 추천량에 접근하였다. 농가가 많이 사용하는 복합비료 비종은 기비로 11-10-10+3+0.3 (원예1호) > 11-6-6+4+13+17(쌀맛나) > 12-9-11+3+0.3(원예범용) 등의 순위이었고, 추비는 18-0-18+0.3(벼수비용) > 13-0-13+1+0.3(웃거름) > 18-0-15+0.3(NK마그) 등의 순위였다. 배추농가에서 퇴비는 계분퇴비 >돈분퇴비 >우분퇴비 >생계분순으로 전체 조사농가중 91.4%의 농가에서, 석회는 소석회 >생석회 >석회고토순으로 81%농가가 사용하였다. 고랭지배추 재배면적(10,206ha)을 적용한 총 소요량으로 볼 때 농가시비량의 절감 가능량은 성분량으로 4,347톤(질소 1,265톤, 인산 1,123톤, 칼리 1,959톤)으로 추정 할 수 있었다.

사용자 로그 분석과 클러스터 내의 문서 유사도를 이용한 동적 추천 시스템 (A Dynamic Recommendation System Using User Log Analysis and Document Similarity in Clusters)

  • 김진수;김태용;최준혁;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.586-594
    • /
    • 2004
  • 웹 문서들은 빠른 생성과 소멸의 특징 때문에, 사용자는 찾고자하는 웹 문서를 신속하고 정확하게 추천해 줄 시스템을 요구하고 있다. 정제되지 않은 웹 데이타에는 사용자들의 축적된 경험들을 포함하는 유용한 정보들을 포함하고 있다. 현재, 이러한 유용한 정보를 마이닝 기법이나 통계학적 측정 방법 등을 가지고 정제하여 추천 시스템을 통해 사용자에게 제공하려는 노력이 시도되고 있다. 기존의 정보 필터링 방식은 사용자들의 프로파일을 반드시 이용해야 하는 문제점을 갖고 있으며, 협력적 필터링 방식은 First Rater 문제와 Sparsity 문제가 있다. 또한 사용자 브라우징 패턴을 이용하는 동적 추천 시스템은 연관성이 없는 웹 문서들을 결과로서 제공한다는 문제점이 있다. 본 논문에서는 웹 문서 형식에 따라 웹 문서 사이의 유사도를 이용하여 웹 문서를 분류하고, 웹 서버에 기록된 로그 파일을 이용하여 사용자 브라우징 순차 패턴 DB를 생성한다. 이렇게 생성된 정보들과 사용자들의 세션 정보를 이용하여, 사용자가 웹 문서에 접근했을 때 현재 웹 문서와 유사도가 높은 상위 N개의 연관 웹 문서 집합을 제공하고, 순차적인 특성을 갖는 웹 문서를 추천 문서로 제공하는 시스템을 제안한다.

협업 필터링 기법을 활용한 개인화된 상품 추천 방법론 개발에 관한 연구 (A Personalized Recommendation Methodology based on Collaborative Filtering)

  • Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.139-157
    • /
    • 2002
  • 본 연구에서는 기존 협업 필터링의 문제점을 해결할 수 있는 효율적인 상품추천 방법론을 제시하고자 한다. 연구에서 제시하는 상품추천 방법론은 기존 협업 필터링 알고리즘의 데이터 희박성 문제 및 동의어 문제를 극복하기 위하여 판매 데이터로 구성된 제품 계층도(Product Taxonomy)를 이용하며, 이 계층도를 기반으로 한 연관 규칙(association rule)과 의사결정 나무를 사용한다. 본 연구에서는 제시한 방법론을 단계별로 설명하였을 뿐만 아니라, 실제 H 백화점 데이터를 이용하여 적용하였다. 다양한 경우에 대하여 실험을 한 결과, 기존의 협업 필터링 알고리즘이 갖고있는 문제점을 상당히 해결하였음을 제시하였다. 이 연구에서 제시한 상품 추천 방법론은 현재 기업이 직면한 경쟁환경 하에서 고객이 과연 누구이며, 고객이 진정 무엇을 원하고 있는지를 파악하는데 도움을 줄 것이며, 고객관계관리 (CRM)를 효율적으로 구현하는 방법론으로 사용될 것으로 기대된다.

  • PDF