Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2018.05a
- /
- Pages.75-78
- /
- 2018
Music Recommendation Technique Using Metadata
메타데이터를 이용한 음악 추천 기법
- Lee, Hye-in (Pukyong National University) ;
- Youn, Sung-dae (Pukyong National University)
- Published : 2018.05.31
Abstract
Recently, the amount of music that can be heard is increasing exponentially due to the growth of the digital music market. Because of this, online music service users have had difficulty choosing their favorite music and have wasted a lot of time. In this paper, we propose a recommendation technique to minimize the difficulty of selection and to reduce wasted time. The proposed technique uses an item - based collaborative filtering algorithm that can recommend items without using personal information. For more accurate recommendation, the user's preference is predicted by using the metadata of the music source and the top-N music with high preference is finally recommended. Experimental results show that the proposed method improves the performance of the proposed method better than it does when the metadata is not used.
최근 디지털 음반시장의 성장으로, 들을 수 있는 음악의 양이 기하급수적으로 늘어나고 있다. 이로 인해 온라인 음원 서비스 이용자들은 마음에 드는 음악을 선택하는데 어려움을 겪고, 많은 시간을 낭비하게 되었다. 본 논문에서는 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용하여 사용자의 선호도를 예측하고 선호도가 높은 Top-N개의 음악을 최종적으로 추천한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.