• Title, Summary, Keyword: 협업필터링

Search Result 284, Processing Time 0.046 seconds

Web 상에서 개인화된 상품 추천을 위한 Hybrid 추천 시스템에 관한 연구

  • Son, Chang-Hwan;Kim, Gi-Su
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • /
    • pp.393-408
    • /
    • 2005
  • 인터넷의 성장은 고객에게 많은 혜택을 주었지만, 방대한 양의 정보는 오히려 장시간의 상품 탐색과 제품 선택을 어렵게 만들었다. 이에 따라, 정보의 양을 줄여 줄 수 있는 서비스를 고객들은 요구를 하기 시작하였고, 이에 따라 다양한 방법들이 고객에게 제시 되어졌다. 제시되어진 방법 중의 하나가 개인화 추천 시스템이다. 추천 시스템은 고객의 취향과 관심에 적합한 상품을 추천 해 주는 서비스로서 상품 검색 노력을 줄여 주고, 고객의 취향에 적합한 제품을 제시 해 줌으로써 고객충성도 제고에도 많은 도움을 주고 있다. 이러한 추천 시스템에서 가장 많이 사용되어지고 있는 기법은 협업 필터링이다. 협업 필터링은 협업에서도유용한 기법으로 인정을 받았다. 하지만 희박성과 확장성이라는 문제점으로 인해 추천의 정확도가 다소 떨어진다는 것이 단점이다. 본 연구에서는 이러한 단점을 극복할 수 있는 방법으로써 Hybrid 협업 필터링 기법을제시하고, 이를 토대로 추천 기법이 혼합되어진 Hybrid 추천 시스템에 대한 개념을 제시하고자 한다.

  • PDF

Recommender Systems using SVD with Social Network Information (사회연결망정보를 고려하는 SVD 기반 추천시스템)

  • Kim, Min-Gun;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • Collaborative Filtering (CF) predicts the focal user's preference for particular item based on user's preference rating data and recommends items for the similar users by using them. It is a popular technique for the personalization in e-commerce to reduce information overload. However, it has some limitations including sparsity and scalability problems. In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process. In this paper, we use a novel recommendation algorithm which is integrated with collaborative filtering by using Social SVD++ algorithm which considers social network information in SVD++, an extension algorithm that can reflect implicit information in singular value decomposition (SVD). In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.

A Study on improvement of performance of collaborative filtering recommendation system using social data (소셜 데이터를 이용한 협업필터링 추천 시스템 성능 개선 연구)

  • Joo, Jong-Min;Yang, Hyung-Jeong;Kim, Nam-Hun;Park, Sung-Hyun;Lee, Gun-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.660-663
    • /
    • 2017
  • 다양한 소셜 네트워크 서비스가 발달되고 많은 사람들이 소셜 미디어에 참여하면서 방대한 양의 정보가 발생하고 있다. 따라서 원하는 정보를 선별하고 가공하는 연구도 활발히 진행되고 있다. 협업필터링은 이러한 정보를 토대로 사용자에게 맞춤형 아이템을 추천해주는 알고리즘이다. 하지만 정확한 추천을 위해서는 매우 방대한 양의 정보가 필요하다. 또한 협업필터링에는 초기에는 제대로 추천이 이루어지지 않는 콜드스타터 문제가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 소셜 네트워크 서비스 중의 하나인 트위터 데이터를 활용하여 협업필터링 추천 시스템의 성능을 높이고자 한다. 협업필터링의 평점에 특정 아이템 관련 트윗을 수집해서 긍정/부정을 측정하여 가중치를 부여한다. RMSE 평가 방법을 통한 실험 결과, 소셜 미디어의 긍부정 영향력을 측정하여 적용했을 때가 기존의 협업필터링 방식에 비해 약 5.5%의 성능 향상을 확인하였다.

A Comprehensive Performance Evaluation in Collaborative Filtering (협업필터링에서 포괄적 성능평가 모델)

  • Yu, Seok-Jong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2012
  • In e-commerce systems that deal with a large number of items, the function of personalized recommendation is essential. Collaborative filtering that is a successful recommendation algorithm, suffers from the sparsity, cold-start, and scalability restrictions. Additionally, this work raises a new flaw of the algorithm, inconsistent performance of recommendation. This is also not measurable by the current MAE-based evaluation that does not consider the deviation of prediction error, and furthermore is performed independently of precision and recall measurement. To evaluate the collaborative filtering comprehensively, this work proposes an extended evaluation model that includes the current criteria such as MAE, Precision, Recall, deviation, and applies it to cluster-based combined collaborative filtering.

협업필터링 추천시스템에서 개인별 선호도의 표준화에 따른 예측성능의 영향

  • Lee, Hui-Chun;Kim, Seon-Ok;Lee, Seok-Jun
    • 한국경영정보학회:학술대회논문집
    • /
    • /
    • pp.597-602
    • /
    • 2007
  • 본 연구는 추천시스템에서 협업필터링 알고리즘을 이용하여 특정 상품에 대한 고객의 선호도를 예측함에 있어 고객이 상품에 대해 평가한 선호도 평가치를 고객별로 표준화시켜 예측하여 기존의 예측 정확도를 향상시키는 방법에 대하여 연구하였다. 일반적으로 상품에 대한 고객의 선호도를 평가하기 위하여 절대적 기준의 수치적 척도가 제공되지만 개인에 따라서는 상품에 대한 선호 정도가 절대적 척도에 다르게 반영되어 개인별 선호도에 차이가 발생할 수 있다. 이러한 개인적 특성이 동일한 척도의 평가치로 예측되면 예측 결과의 오차를 크게 할 가능성이 있다. 또한 개인이 평가한 선호도 평가치의 편차가 협업필터링 알고리즘을 통한 선호도 예측 정확도와 밀접한 관계를 가지고 있음을 알 수 있었으며 이러한 문제를 해결하기 위하여 개별 고객이 평가한 선호도 평가치를 표준화시켜 표준화된 선호도 평가치를 이용한 선호도 예측을 실시하였다. 분석결과 표준화된 선호도 평가치를 이용한 예측 결과가 비표준화 선호도 평가치를 이용한 예측 결과보다 예측력이 우수함을 알 수 있었으며 결과에 대한 통계적 분석을 통하여 표준화된 선호도 평가치를 이용한 선호도 예측 방법과 비 표준화 선호도 평가치를 이용한 선호도 예측 방법을 혼합할 경우 선호도 예측 정확도를 더 향상시킬 수 있음을 알 수 있었다.

  • PDF

A Movie Recommendation System based on Collaborative filtering and review (협업필터링과 리뷰 기반의 영화추천시스템)

  • Park, Ju-Hyun;Kim, Min-ki;Kim, Min-Jung;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.294-296
    • /
    • 2015
  • 최근 들어, 영화에 대한 많은 추천시스템이 제안 되고 있는데, 나이와 장르, 성별에 관한 협업필터링 추천 방식을 주로 사용했다. 협업필터링 방법에 좀 더 정확한 추천을 하기 위해서 본 논문에서는 기존의 협업필터링 방식에 더해서 사용자의 리뷰에서 인간의 '감정'을 장르에 편입시켜 좀 더 사용자에게 정확하고 명확하게 추천하는 영화추천시스템을 제안한다.

Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

  • Kim, Mingun;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.107-120
    • /
    • 2014
  • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering (협업필터링의 신규고객추천 및 희박성 문제 해결을 위한 중심성분석의 활용)

  • Cho, Yoon-Ho;Bang, Joung-Hae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.99-114
    • /
    • 2011
  • Collaborative Filtering (CF) suffers from two major problems:sparsity and cold-start recommendation. This paper focuses on the cold-start problem for new customers with no purchase records and the sparsity problem for the customers with very few purchase records. For the purpose, we propose a method for the new customer recommendation by using a combined measure based on three well-used centrality measures to identify the customers who are most likely to become neighbors of the new customer. To alleviate the sparsity problem, we also propose a hybrid approach that applies our method to customers with very few purchase records and CF to the other customers with sufficient purchases. To evaluate the effectiveness of our method, we have conducted several experiments using a data set from a department store in Korea. The experiment results show that the combination of two measures makes better recommendations than not only a single measure but also the best-seller-based method and that the performance is improved when applying the hybrid approach.

Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering (장르별 협업필터링을 이용한 영화 추천 시스템의 성능 향상)

  • Lee, Jae-Sik;Park, Seog-Du
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.65-78
    • /
    • 2007
  • This paper proposes a new method of weighted template matching for machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. Template matching is vulnerable to random noises that generate ragged outlines of a pattern when it is binarized. This paper offers a method of chain code trimming in order to remove ragged outlines. The method corrects specific chain codes within the chain codes of the inner and the outer contour of a pattern. The experiment compares confusion matrices of both the template matching and the proposed weighted template matching with chain code trimming. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.

  • PDF

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.