• Title/Summary/Keyword: Top-N 추천

Search Result 33, Processing Time 0.027 seconds

A Study on the Relation of Top-N Recommendation and the Rank Fitting of Prediction Value through a Improved Collaborative Filtering Algorithm (협력적 필터링 알고리즘의 예측 선호도 순위 일치와 ToP-N 추천에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • This study devotes to compare the accuracy of Top-N recommendations of items transacted on the web site for customers with the accuracy of rank conformity of the real ratings with estimated ratings for customers preference about items generated from two types of collaborative filtering algorithms. One is Neighborhood Based Collaborative Filtering Algorithm(NBCFA) and the other is Correspondence Mean Algorithm(CMA). The result of this study shows the accuracy of Top-N recommendations and the rank conformity of real ratings with estimated ratings generated by CMA are better than that of NBCFA. It would be expected that the customer's satisfaction in Recommender System is more improved by using the prediction result from CMA than NBCFA, and then Using CMA in collaborative filtering recommender system is more efficient than using NBCFA.

  • PDF

An Effective Preference Model to Improve Top-N Recommendation (상위 N개 항목의 추천 정확도 향상을 위한 효과적인 선호도 표현방법)

  • Lee, Jaewoong;Lee, Jongwuk
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.621-627
    • /
    • 2017
  • Collaborative filtering is a technique that effectively recommends unrated items for users. Collaborative filtering is based on the similarity of the items evaluated by users. The existing top-N recommendation methods are based on pair-wise and list-wise preference models. However, these methods do not effectively represent the relative preference of items that are evaluated by users, and can not reflect the importance of each item. In this paper, we propose a new method to represent user's latent preference by combining an existing preference model and the notion of inverse user frequency. The proposed method improves the accuracy of existing methods by up to two times.

Music Recommendation Technique Using Metadata (메타데이터를 이용한 음악 추천 기법)

  • Lee, Hye-in;Youn, Sung-dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.75-78
    • /
    • 2018
  • Recently, the amount of music that can be heard is increasing exponentially due to the growth of the digital music market. Because of this, online music service users have had difficulty choosing their favorite music and have wasted a lot of time. In this paper, we propose a recommendation technique to minimize the difficulty of selection and to reduce wasted time. The proposed technique uses an item - based collaborative filtering algorithm that can recommend items without using personal information. For more accurate recommendation, the user's preference is predicted by using the metadata of the music source and the top-N music with high preference is finally recommended. Experimental results show that the proposed method improves the performance of the proposed method better than it does when the metadata is not used.

  • PDF

Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering (협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.542-553
    • /
    • 2005
  • Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.

Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset (암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링)

  • Ji, JiaQi;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.495-507
    • /
    • 2019
  • Data sparsity is one of the main challenges for the recommender system. The recommender system contains massive data in which only a small part is the observed data and the others are missing data. Most studies assume that missing data is randomly missing from the dataset. Therefore, they only use observed data to train recommendation model, then recommend items to users. In actual case, however, missing data do not lost randomly. In our research, treat these missing data as negative examples of users' interest. Three sample methods are seamlessly integrated into SVD++ algorithm and then propose SVD++_W, SVD++_R and SVD++_KNN algorithm. Experimental results show that proposed sample methods effectively improve the precision in Top-N recommendation over the baseline algorithms. Among the three improved algorithms, SVD++_KNN has the best performance, which shows that the KNN sample method is a more effective way to extract the negative examples of the users' interest.

Personalized Itinerary Recommendation System based on Stay Time (체류시간을 고려한 여행 일정 추천 시스템)

  • Park, Sehwa;Park, Seog
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Recent developments regarding transportation technology have positioned travel as a major leisure activity; however, trip-itinerary planning remains a challenging task for tourists due to the need to select Points of Interest (POI) for visits to unfamiliar cities. Meanwhile, due to the GPS functions on mobile devices such as smartphones and tablet PCs, it is now possible to collect a user's position in real time. Based on these circumstances, our research on an automatic itinerary-planning system to simplify the trip-planning process was conducted briskly. The existing studies that include research on itinerary schedules focus on an identification of the shortest path in consideration of cost and time constraints, or a recommendation of the most-popular travel route in the destination area; therefore, we propose a personalized itinerary-recommendation system for which the stay-time preference of the individual user is considered as part of the personalized service.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Status of Fertilizer Applications in Farmers' Field for Summer Chinese Cabbage in Highland (고랭지 배추 재배농가의 시비실태 조사연구)

  • Lee, Choon-Soo;Lee, Gye-Jun;Lee, Jeong-Tae;Shin, Kwan-Yong;Ahn, Jae-Hoon;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.306-313
    • /
    • 2002
  • The investigation was conducted to find out amounts and ratios of N, P and K fertilizers applied on summer Chinese cabbage in 58 farmers' fields of highland area. The application levels of N, $P_2O_5$, $K_2O$, livestock manure and lime fertilizers were 444, 188, 390, 9,920 and $2,160kg\;ha^{-1}$, respectively, for summer Chinese cabbage. The ratios of basal dressing were 48% in N, 46.6% in $K_2O$. The frequencies of top dressing both N and K were 1.7 times. The kinds of compound fertilizers were in the order of 11-10-10+3+0.3 > 11-6-6+4+13+17 > 12-9-11+3+0.3 in basal application and 18-0-18+0.3 > 13-0-13+1+0.3 > 18-0-15+0.3 in top dressing. From the surveyed results, we could estimate that total 4,347 tons of N, $P_2O_5$, and $K_2O$ fertilizers were over used for summer Chinese cabbage by farmers in highland.

A Dynamic Recommendation System Using User Log Analysis and Document Similarity in Clusters (사용자 로그 분석과 클러스터 내의 문서 유사도를 이용한 동적 추천 시스템)

  • 김진수;김태용;최준혁;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.586-594
    • /
    • 2004
  • Because web documents become creation and disappearance rapidly, users require the recommend system that offers users to browse the web document conveniently and correctly. One largely untapped source of knowledge about large data collections is contained in the cumulative experiences of individuals finding useful information in the collection. Recommendation systems attempt to extract such useful information by capturing and mining one or more measures of the usefulness of the data. The existing Information Filtering system has the shortcoming that it must have user's profile. And Collaborative Filtering system has the shortcoming that users have to rate each web document first and in high-quantity, low-quality environments, users may cover only a tiny percentage of documents available. And dynamic recommendation system using the user browsing pattern also provides users with unrelated web documents. This paper classifies these web documents using the similarity between the web documents under the web document type and extracts the user browsing sequential pattern DB using the users' session information based on the web server log file. When user approaches the web document, the proposed Dynamic recommendation system recommends Top N-associated web documents set that has high similarity between current web document and other web documents and recommends set that has sequential specificity using the extracted informations and users' session information.

A Personalized Recommendation Methodology based on Collaborative Filtering (협업 필터링 기법을 활용한 개인화된 상품 추천 방법론 개발에 관한 연구)

  • Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.139-157
    • /
    • 2002
  • The rapid growth of e-commerce has made both companies and customers face a new situation. Whereas companies have become to be harder to survive due to more and more competitions, the opportunity for customers to choose among more and more products has increased. So, the recommender systems that recommend suitable products to the customer have an important position in E-commerce. This research introduces collaborative filtering based recommender system which helps customers find the products they would like to purchase by producing a list of top-N recommended products. The suggested methodology is based on decision tree, product taxonomy, and association rule mining. Decision tree is used to select target customers, who have high possibility of purchasing recommended products. We applied the recommender system to a Korean department store. The methodology is evaluated with the analysis of a real department store case and is compared with other methodologies.

  • PDF