• Title/Summary/Keyword: Tooth germs

Search Result 31, Processing Time 0.022 seconds

THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE (치아 기관배양시 골형성단백의 역할에 관한 연구)

  • Chung, Il-Hyuk;Chung, Jong-Hoon;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.

THE EFFECTS OF FORMOCRESOL AND GLUTARALDEHYDE ON THE PERFORATED INTERRADICULAR TISSUES AND TOOTH GERMS OF PRIMARY TEETH IN DOGS (Formocresol, Glutaraldehyde가 유견 계승치 치배 및 주위조직에 미치는 영향에 관한 병리조직학적 연구)

  • Choi, Byung-Jai;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.8 no.1
    • /
    • pp.55-63
    • /
    • 1981
  • The purpose of this study is to observe the effect of formocresol and glutaraldehyde to tooth germs and periapical tissues after perforation of interradicular portion of pulpal floor and application of physiological saline solution in control groups, formocresol and glutaraldehyde in experimental groups. The following results were obtained 1. In control groups, normal healing processes were seen, and, on the sixteenth day, the epithelization of injured areas was completed. Inflammatory reactions were limited to the injured surface, and the underlying alveolar bone were normal and successive tooth germs were normal. 2. In both formocresol groups and glutaraldehyde groups, tissue reactions were identical. Inflammatory reactions were slightly compared with control groups, but the surface epithelizations were delayed compared with control group. 3. In both formocresol and glutaraldehyde groups, necrosis was seen in superficial tissue of bone marrow, and, at 24th day, center area of bone marrow on the successive tooth germs were losed and replaced with connective tissue, and superficial soft tissue of the injured area was connected with soft tissue on the successive tooth germ. In remaining alveolar bone, osteoclastic reaction was remarkable. 4. In both formocresol and glutaraldehyde groups, there is no injury to the successive tooth germs. 5. In both formocresol and glutaraldehyde groups, periodontal membrane was normal, but the partial resorption of cementum and dentin near the injured area were seen.

  • PDF

ROENTGENOGRAPHIC STUDY ON THE GROWTH AND DEVELOPMENT OF TOOTH GERM AND DENTAL ARCH IN HUMAN FETUS (태아(胎兒)의 치배(齒胚) 및 치열궁(齒列弓)의 성장(成長)과 발육(發育)에 관(關)한 방사선적(放射線的) 연구(?究))

  • Chean, Ok Kyung;Suhr, Cheong Hoon
    • The korean journal of orthodontics
    • /
    • v.12 no.2
    • /
    • pp.95-108
    • /
    • 1982
  • The purpose of this study was to analyze the growth and development of tooth germ and dental arch related to the bone growth during the fetal period. From 70 maxillae and 61 mandibles of the fetus aged 5, 6, 7, 8, 9 and 10 months, X-ray films were taken and measured. The results were as follows; 1. There was remarkable bone growth in the anterior and posterior area of palatum osseum, that were the intetior portion of both deciduous canines anteriorly and the intero-posterior portion of both deciduous second molars posteriorly, where there was active bone growth and radiate formation of bony trabeculae was found. 2. The Growth of anterior tooth germ was greater than that of posterior tooth germ, so anterior tooth germs were crowded. Especially in maxilla, the tooth germs of deciduous lateral incisors were located inside of dental arch and the tooth germs of deciduous canines were located outside of dental arch. 3. Crowding amount increased with the fetal age because the growth of tooth germs was greater than that of jaw bone. 4. In the growth of upper dental arch, the increase of width was greater than that of length. 5. There was proportional relationship between the area of Palatal Trapezoid and the fetal age.

  • PDF

MMP-2 and MMP-9 are Differentially Involved in Molar Growth

  • Kim, Min-Seok;Kang, Jee-Hae;Kim, Dong-Hoo;Yoo, Hong-Il;Jung, Na-Ri;Yang, So-Young;Lee, Eun-Ju;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.195-201
    • /
    • 2011
  • Matrix metalloproteinases (MMPs) have been implicated in tissue development and re-modeling. Dynamic morphological changes of tooth germs reflect involvement of these enzymes during odontogenesis. The present study was performed to investigate expression and localization of MMP-2 and MMP-9, which have been known to have type IV collagenase activities, in rat tooth germs at different developmental stages. MMP-2 expression was increased gradually in the tooth germs from cap to crown staged germs at both transcription and translation levels. The localization of this molecule was detected in secretory ameloblasts and preameloblasts. The strong immunoreactivities were occasionally seen along the basement membrane between ameloblasts (or preameloblasts) and odontoblasts (preodontoblasts). However, weak reactivity was detected in odontoblasts and reduced enamel epithelium. The level of MMP-9 expression in the tooth germs was higher in cap stage than in crown staged germs at both transcription and translation levels. They were strongly expressed in both ameloblasts and odontoblasts. Even though reduced enamel epithelium after enamel formation and inner enamel epithelium at the cap stage exhibited weak reactivity, strong reactivity was detected in dental follicles and perifollicular tissues surrounding cap staged germs. These results suggested that MMP-2 may involve degradation of the basement membrane during hard tissue formation, whereas MMP-9 might be involved in remodeling of follicular tissues.

A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

  • Kaya, Emine;Gunec, Huseyin Gurkan;Aydin, Kader Cesur;Urkmez, Elif Seyda;Duranay, Recep;Ates, Hasan Fehmi
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.275-281
    • /
    • 2022
  • Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort

Differential Expression of Osteonectin in the Rat Developing Molars

  • Kim, Jung-Ha;Yoo, Hong-Il;Oh, Min-Hee;Yang, So-Young;Kim, Min-Seok;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • Tooth development involves bud, cap, bell and hard tissue formation stages, each of which is tightly controlled by regulatory molecules. The aim of this study was to identify genes that are differentially expressed during dental hard tissue differentiation. Sprague-Dawley rats at postnatal days 3, 6 and 9 were used in the analysis. Differential display RT-PCR (DD-PCR) was used to screen differentially expressed genes between the 2nd (root formation stage, during mineralization) and 3rd (cap stage, before mineralization) molar germs at postnatal day 9. The DNA detected in the 2nd molar germs showed homology to osteonectin only (GenBank accession no. NM_012656.1). The level of osteonectin mRNA expression was much higher in the 2nd molar germs than in the 3rd molar germs and was found to increase in a time-dependent manner from the early bell stage to the root formation stage in the 2nd molar germs. The pattern of osteonectin protein expression was consistent with these RT-PCR results. Osteonectin protein was found by immunofluorescent analysis to localize in odontoblasts and preodontoblasts rather than the dentin matrix itself. Further studies are needed to validate the involvement of osteonectin in mineralization and root formation.

DEVELOPMENTAL DISTURBANCE OF PERMANENT TOOTH GERMS AFTER RADIOTHERAPY : REPORT OF CASE (방사선치료 후 영구치 치배 발육장애 증례보고)

  • Kang, Myung-Bong;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.251-255
    • /
    • 2005
  • Radiotherapy for head and neck tumors is a viable treatment modality. However, a wide range of potentially debilitating dental complications may be accompanied by this treatment. We report two cases of developmental disturbance of permanent tooth germs after radiotherapy. The one was that of a seven-year-old girl, who had congenitally missing teeth, and microdontia of permanent tooth germs. she had received radiotherapy for acute myelocytic leukemia at the age of 19 months. The other was that of a nine-year-old boy, in which congenitally missing teeth, microdontia, root hypoplasia, and enamel hypoplasia of permanent teeth were observed. He had undergone a course of radiotherapy for bilateral retinoblastoma at the age of 13 months.

  • PDF

Expression and Localization of Keap1 During Amelogenesis in the Developing Molar Germ of Rats

  • Kim, Sun-Hun;You, Yong-Ouk;Ko, Hyun-Mi;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.177-183
    • /
    • 2018
  • The objective of this study was to examine the expression pattern of Kelch-like ECH-associated protein 1 (Keap1) in the maxillary $2^{nd}$ molar germs of rats. We used the maxillary $2^{nd}$ molar germs in rats' pup at postnatal day 3 (bell stage), 6 (crown formation stage) and 9 (root formation stage). The investigation on mRNA and protein levels were done using reverse transcription - polymerase chain reaction and western blot. Localization of Keap 1 in the maxillary $2^{nd}$ molar germs were revealed through immunofluorescence staining. Keap1 from the maxillary 2nd molar germs were mostly manifested on postnatal day 3 and dramatically decreased on postnatal day 6 and 9 at mRNA and protein levels, while amelogenin and ameloblastin increased during the development of maxillary 2nd molar germs. During immunofluorescence analysis, the strong immunoreactivity against Keap1 was detected in the apical side of ameloblasts at the presecretory and secretory stages. However, Keap1 expression was hardly observed in the ameloblasts at the maturation stage. These results shows that Keap1 is strongly expressed in the presecretory and secretory ameloblasts of amelogenesis, and suggest that Keap1 may be a crucial molecule for the regulatory mechanisms tasked with the formation of enamel layer.

DEVELOPMENT OF ALLOTRANSPLANTED TOOTH GERMS AT VARIOUS DEVELOPMENTAL STAGE INTO THE WHITE RAT'S EXTRACTION SOCKET (흰쥐의 발치와에 이식한 단계별 치아싹의 발육 과정)

  • Jung, Hwi-Hoon;Jung, Han-Sung;Kim, Seoung-Oh;Choi, Hyung-Jun;Lee, Jae-Ho;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • The purpose of this study is to evaluate at which stage of tooth germ would develop into normal calcification and hence to increase the success rate of transplantation. Therefore, tooth germs on the 15th, 17th embryonic day and the 3rd day of birth were separated for allotransplantation into maxilla of adult rat of 11 weeks. Calcification processes were analyzed radiographically and histopathologically at 4 weeks and 8 weeks after allotransplantation. The results are as follows: 1. Allotransplanted tooth germ at 4 weeks and 8 weeks showed delayed calcification compared to that of normal odontogenesis. 2. At 4 weeks, abnormal calcified tissue, such as odontoma and ankylosis of osteodentin with surrounding alveolar bone were observed. 3. At 8 weeks, allotransplanted tooth germs of the 15th and 17th embryonic day showed calcification and osteodentin surrounded by periodontal ligament. 4. At 8 weeks, allotransplanted tooth germs of the 3rd day of birth showed calcification composed of cementum and osteodentin. In this study, we observed small sized and amorphous calcified tissue from allotropic allotransplantation of tooth germs. Since these calcified tissue were underdeveloped and shaped irregularly, for calcification into normal tooth form, further study needs consideration about the reduction of surgical trauma, developmental stage of transplanted tooth germ, blood supply from recipient site, fixation method in transplanted site and period of transplantation.

  • PDF

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.