References
- Choi JW. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent 2011; 41: 1-6. https://doi.org/10.5624/isd.2011.41.1.1
- Farman A, Farman, TT. Extraoral and panoramic systems. Dent Clin North Am 2000; 44: 257-72. https://doi.org/10.1016/S0011-8532(22)01302-7
- Marsillac Mde W, Andrade MR, Fonseca Rde O, Marcal SL, Santos VL. Dental anomalies in panoramic radiographs of pediatric patients. Gen Dent 2013; 61: e29-33.
- Yoshida K, Fukuda M, Gotoh K, Ariji E. Depression of the maxillary sinus anterior wall and its influence on panoramic radiography appearance. Dentomaxillofac Radiol 2017; 46: 20170126. https://doi.org/10.1259/dmfr.20170126
- Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007; 31: 198-211. https://doi.org/10.1016/j.compmedimag.2007.02.002
- Kuwada C, Ariji Y, Fukuda M, Kise Y, Fujita H, Katsumata A, et al. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 464-9. https://doi.org/10.1016/j.oooo.2020.04.813
- Li Z, Zhang X, Muller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal 2018; 43: 66-84. https://doi.org/10.1016/j.media.2017.09.007
- Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent 2019; 91: 103226. https://doi.org/10.1016/j.jdent.2019.103226
- Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285-98. https://doi.org/10.1109/TMI.2016.2528162
- Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129: 635-42. https://doi.org/10.1016/j.oooo.2019.11.007
- Mahdi FP, Motoki K, Kobashi S. Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs. Sci Rep 2020; 10: 19261. https://doi.org/10.1038/s41598-020-75887-9
- Devito KL, de Souza Barbosa F, Felippe Filho WN. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 879-84. https://doi.org/10.1016/j.tripleo.2008.03.002
- Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77: 106-11. https://doi.org/10.1016/j.jdent.2018.07.015
- Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod 2019; 45: 917-22.e5. https://doi.org/10.1016/j.joen.2019.03.016
- Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 2019; 9: 8495. https://doi.org/10.1038/s41598-019-44839-3
- Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol 2019; 48: 20180051. https://doi.org/10.1259/dmfr.20180051
- Caliskan S, Tuloglu N, Celik O, Ozdemir C, Kizilaslan S, Bayrak S. A pilot study of a deep learning approach to submerged primary tooth classification and detection. Int J Comput Dent 2021; 24: 1-9.
- Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics(Basel) 2021; 11: 1477.
- Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS. Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep 2021; 11: 23061. https://doi.org/10.1038/s41598-021-02571-x
- Law CS, Blain S. Approaching the pediatric dental patient: a review of nonpharmacologic behavior management strategies. J Calif Dent Assoc 2003; 31: 703-13. https://doi.org/10.1080/19424396.2003.12224217
- Rallan M, Rallan NS, Goswami M, Rawat K. Surgical management of multiple supernumerary teeth and an impacted maxillary permanent central incisor. BMJ Case Rep 2013; 2013: bcr2013009995.
- Tzutalin D. LabelImg [Internet]. San Francisco: Gifthub; 2015 [cited 2022 Apr 13]. Available from: https://github.com/tzutalin/labelImg.
- Nielsen KB, Lautrup ML, Andersen JK, Savarimuthu TR, Grauslund J. Deep learning-based algorithms in screening of diabetic retinopathy: a systematic review of diagnostic performance. Ophthalmol Retina 2019; 3: 294-304. https://doi.org/10.1016/j.oret.2018.10.014
- Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017; 37: 2113-31. https://doi.org/10.1148/rg.2017170077
- Garcia Rubio V, Rodrigo Ferran JA, Menendez Garcia JM, Sanchez Almodovar N, Lalueza Mayordomo JM, Alvarez F. Automatic change detection system over unmanned aerial vehicle video sequences based on convolutional neural networks. Sensors(Basel) 2019; 19: 4484.
- Bochkovskiy A, Wang CY, Liao HY. YOLOv4: optimal speed and accuracy of object detection. arXiv [Internet]: 2020 Apr [cited 2022 Apr 13]. Available from: https://arxiv.org/abs/2004.10934.
- Cordeiro MM, Rocha MJ. The effects of periradicular inflamation and infection on a primary tooth and permanent successor. J Clin Pediatr Dent 2005; 29: 193-200. https://doi.org/10.17796/jcpd.29.3.5238p10v21r2j162
- Kilic MC, Bayrakdar IS, Celik O, Bilgir E, Orhan K, Aydin OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol 2021; 50: 20200172. https://doi.org/10.1259/dmfr.20200172
- Redmon JDS, Girshick R, Farhadi A. You only look once: unified, real-time object detection. arXiv [Internet]: 2015 Jun [cited 2022 Apr 13]. Available from: https://arxiv.org/abs/1506.02640.
- Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, et al. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med 2020; 9: 1839. https://doi.org/10.3390/jcm9061839
- Kim Y, Lee KJ, Sunwoo L, Choi D, Nam CM, Cho J, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Invest Radiol 2019; 54: 7-15. https://doi.org/10.1097/RLI.0000000000000503
- Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol 2021; 50: 20200171.
- Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol 2019; 35: 301-7. https://doi.org/10.1007/s11282-018-0363-7
- Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg 2021; 122: 333-7. https://doi.org/10.1016/j.jormas.2020.12.006
- Vinayahalingam S, Xi T, Berge S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep 2019; 9: 9007. https://doi.org/10.1038/s41598-019-45487-3
- White SC, Pharoah MJ. Oral Radiology: principles and interpretation. 7th ed. St. Louis: Elsevier; 2014. p. 41-63.
- Ali S, Siddique A, Ates HF, Gunturk BK. Improved YOLOv4 for aerial object detection. 2021 29th Signal Processing and Communications Applications Conference (SIU); 2021 Jun 9-11; Istanbul, Turkey. IEEE; 2021. p. 1-4.