DOI QR코드

DOI QR Code

A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

  • Kaya, Emine (Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul Okan University) ;
  • Gunec, Huseyin Gurkan (Department of Endodontics, Faculty of Dentistry, Atlas University) ;
  • Aydin, Kader Cesur (Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Istanbul Medipol University) ;
  • Urkmez, Elif Seyda (Basaksehir Inci ADSM) ;
  • Duranay, Recep (Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Atlas University) ;
  • Ates, Hasan Fehmi (Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University)
  • Received : 2022.03.10
  • Accepted : 2022.06.01
  • Published : 2022.09.30

Abstract

Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort

Keywords

References

  1. Choi JW. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent 2011; 41: 1-6. https://doi.org/10.5624/isd.2011.41.1.1
  2. Farman A, Farman, TT. Extraoral and panoramic systems. Dent Clin North Am 2000; 44: 257-72. https://doi.org/10.1016/S0011-8532(22)01302-7
  3. Marsillac Mde W, Andrade MR, Fonseca Rde O, Marcal SL, Santos VL. Dental anomalies in panoramic radiographs of pediatric patients. Gen Dent 2013; 61: e29-33.
  4. Yoshida K, Fukuda M, Gotoh K, Ariji E. Depression of the maxillary sinus anterior wall and its influence on panoramic radiography appearance. Dentomaxillofac Radiol 2017; 46: 20170126. https://doi.org/10.1259/dmfr.20170126
  5. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007; 31: 198-211. https://doi.org/10.1016/j.compmedimag.2007.02.002
  6. Kuwada C, Ariji Y, Fukuda M, Kise Y, Fujita H, Katsumata A, et al. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 464-9. https://doi.org/10.1016/j.oooo.2020.04.813
  7. Li Z, Zhang X, Muller H, Zhang S. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal 2018; 43: 66-84. https://doi.org/10.1016/j.media.2017.09.007
  8. Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent 2019; 91: 103226. https://doi.org/10.1016/j.jdent.2019.103226
  9. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285-98. https://doi.org/10.1109/TMI.2016.2528162
  10. Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129: 635-42. https://doi.org/10.1016/j.oooo.2019.11.007
  11. Mahdi FP, Motoki K, Kobashi S. Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs. Sci Rep 2020; 10: 19261. https://doi.org/10.1038/s41598-020-75887-9
  12. Devito KL, de Souza Barbosa F, Felippe Filho WN. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 879-84. https://doi.org/10.1016/j.tripleo.2008.03.002
  13. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77: 106-11. https://doi.org/10.1016/j.jdent.2018.07.015
  14. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod 2019; 45: 917-22.e5. https://doi.org/10.1016/j.joen.2019.03.016
  15. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 2019; 9: 8495. https://doi.org/10.1038/s41598-019-44839-3
  16. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol 2019; 48: 20180051. https://doi.org/10.1259/dmfr.20180051
  17. Caliskan S, Tuloglu N, Celik O, Ozdemir C, Kizilaslan S, Bayrak S. A pilot study of a deep learning approach to submerged primary tooth classification and detection. Int J Comput Dent 2021; 24: 1-9.
  18. Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics(Basel) 2021; 11: 1477.
  19. Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS. Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep 2021; 11: 23061. https://doi.org/10.1038/s41598-021-02571-x
  20. Law CS, Blain S. Approaching the pediatric dental patient: a review of nonpharmacologic behavior management strategies. J Calif Dent Assoc 2003; 31: 703-13. https://doi.org/10.1080/19424396.2003.12224217
  21. Rallan M, Rallan NS, Goswami M, Rawat K. Surgical management of multiple supernumerary teeth and an impacted maxillary permanent central incisor. BMJ Case Rep 2013; 2013: bcr2013009995.
  22. Tzutalin D. LabelImg [Internet]. San Francisco: Gifthub; 2015 [cited 2022 Apr 13]. Available from: https://github.com/tzutalin/labelImg.
  23. Nielsen KB, Lautrup ML, Andersen JK, Savarimuthu TR, Grauslund J. Deep learning-based algorithms in screening of diabetic retinopathy: a systematic review of diagnostic performance. Ophthalmol Retina 2019; 3: 294-304. https://doi.org/10.1016/j.oret.2018.10.014
  24. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017; 37: 2113-31. https://doi.org/10.1148/rg.2017170077
  25. Garcia Rubio V, Rodrigo Ferran JA, Menendez Garcia JM, Sanchez Almodovar N, Lalueza Mayordomo JM, Alvarez F. Automatic change detection system over unmanned aerial vehicle video sequences based on convolutional neural networks. Sensors(Basel) 2019; 19: 4484.
  26. Bochkovskiy A, Wang CY, Liao HY. YOLOv4: optimal speed and accuracy of object detection. arXiv [Internet]: 2020 Apr [cited 2022 Apr 13]. Available from: https://arxiv.org/abs/2004.10934.
  27. Cordeiro MM, Rocha MJ. The effects of periradicular inflamation and infection on a primary tooth and permanent successor. J Clin Pediatr Dent 2005; 29: 193-200. https://doi.org/10.17796/jcpd.29.3.5238p10v21r2j162
  28. Kilic MC, Bayrakdar IS, Celik O, Bilgir E, Orhan K, Aydin OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol 2021; 50: 20200172. https://doi.org/10.1259/dmfr.20200172
  29. Redmon JDS, Girshick R, Farhadi A. You only look once: unified, real-time object detection. arXiv [Internet]: 2015 Jun [cited 2022 Apr 13]. Available from: https://arxiv.org/abs/1506.02640.
  30. Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, et al. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med 2020; 9: 1839. https://doi.org/10.3390/jcm9061839
  31. Kim Y, Lee KJ, Sunwoo L, Choi D, Nam CM, Cho J, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Invest Radiol 2019; 54: 7-15. https://doi.org/10.1097/RLI.0000000000000503
  32. Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol 2021; 50: 20200171.
  33. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol 2019; 35: 301-7. https://doi.org/10.1007/s11282-018-0363-7
  34. Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg 2021; 122: 333-7. https://doi.org/10.1016/j.jormas.2020.12.006
  35. Vinayahalingam S, Xi T, Berge S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep 2019; 9: 9007. https://doi.org/10.1038/s41598-019-45487-3
  36. White SC, Pharoah MJ. Oral Radiology: principles and interpretation. 7th ed. St. Louis: Elsevier; 2014. p. 41-63.
  37. Ali S, Siddique A, Ates HF, Gunturk BK. Improved YOLOv4 for aerial object detection. 2021 29th Signal Processing and Communications Applications Conference (SIU); 2021 Jun 9-11; Istanbul, Turkey. IEEE; 2021. p. 1-4.