• Title/Summary/Keyword: Tool System

Search Result 9,305, Processing Time 0.05 seconds

Can ChatGPT Pass the National Korean Occupational Therapy Licensure Examination? (ChatGPT는 한국작업치료사면허시험에 합격할 수 있을까?)

  • Hong, Junhwa;Kim, Nayeon;Min, Hyemin;Yang, Hamin;Lee, Sihyun;Choi, Seojin;Park, Jin-Hyuck
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • Objective : This study assessed ChatGPT, an artificial intelligence system based on a large language model, for its ability to pass the National Korean Occupational Therapy Licensure Examination (NKOTLE). Methods : Using NKOTLE questions from 2018 to 2022, provided by the Korea Health and Medical Personnel Examination Institute, this study employed English prompts to determine the accuracy of ChatGPT in providing correct answers. Two researchers independently conducted the entire process, and the average accuracy of both researchers was used to determine whether ChatGPT passed over the 5-year period. The degree of agreement between ChatGPT answers of the two researchers was assessed. Results : ChatGPT passed the 2020 examination but failed to pass the other 4 years' examination. Specifically, its accuracy in questions related to medical regulations ranged from 25% to 57%, whereas its accuracy in other questions exceeded 60%. ChatGPT exhibited a strong agreement between researchers, except for medical regulation questions, and this agreement was significantly correlated with accuracy. Conclusion : There are still limitations to the application of ChatGPT to answer questions influenced by language or culture. Future studies should explore its potential as an educational tool for students majoring in occupational therapy through optimized prompts and continuous learning from the data.

Automated Versus Handheld Breast Ultrasound for Evaluating Axillary Lymph Nodes in Patients With Breast Cancer

  • Sun Mi Kim;Mijung Jang;Bo La Yun;Sung Ui Shin;Jiwon Rim;Eunyoung Kang;Eun-Kyu Kim;Hee-Chul Shin;So Yeon Park;Bohyoung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.146-156
    • /
    • 2024
  • Objective: Automated breast ultrasound (ABUS) is a relevant imaging technique for early breast cancer diagnosis and is increasingly being used as a supplementary tool for mammography. This study compared the performance of ABUS and handheld ultrasound (HHUS) in detecting and characterizing the axillary lymph nodes (LNs) in patients with breast cancer. Materials and Methods: We retrospectively reviewed the medical records of women with recently diagnosed early breast cancer (≤ T2) who underwent both ABUS and HHUS examinations for axilla (September 2017-May 2018). ABUS and HHUS findings were compared using pathological outcomes as reference standards. Diagnostic performance in predicting any axillary LN metastasis and heavy nodal-burden metastases (i.e., ≥ 3 LNs) was evaluated. The ABUS-HHUS agreement for visibility and US findings was calculated. Results: The study included 377 women (53.1 ± 11.1 years). Among 385 breast cancers in 377 patients, 101 had axillary LN metastases and 30 had heavy nodal burden metastases. ABUS identified benign-looking or suspicious axillary LNs (average, 1.4 ± 0.8) in 246 axillae (63.9%, 246/385). According to the per-breast analysis, the sensitivity, specificity, positive and negative predictive values, and accuracy of ABUS in predicting axillary LN metastases were 43.6% (44/101), 95.1% (270/284), 75.9% (44/58), 82.6% (270/327), and 81.6% (314/385), respectively. The corresponding results for HHUS were 41.6% (42/101), 95.1% (270/284), 75.0% (42/56), 82.1% (270/329), and 81.0% (312/385), respectively, which were not significantly different from those of ABUS (P ≥ 0.53). The performance results for heavy nodal-burden metastases were 70.0% (21/30), 89.6% (318/355), 36.2% (21/58), 97.3% (318/327), and 88.1% (339/385), respectively, for ABUS and 66.7% (20/30), 89.9% (319/355), 35.7% (20/56), 97.0% (319/329), and 88.1% (339/385), respectively, for HHUS, also not showing significant difference (P ≥ 0.57). The ABUS-HHUS agreement was 95.9% (236/246; Cohen's kappa = 0.883). Conclusion: Although ABUS showed limited sensitivity in diagnosing axillary LN metastasis in early breast cancer, it was still useful as the performance was comparable to that of HHUS.

Creating and Utilization of Virtual Human via Facial Capturing based on Photogrammetry (포토그래메트리 기반 페이셜 캡처를 통한 버추얼 휴먼 제작 및 활용)

  • Ji Yun;Haitao Jiang;Zhou Jiani;Sunghoon Cho;Tae Soo Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.113-118
    • /
    • 2024
  • Recently, advancements in artificial intelligence and computer graphics technology have led to the emergence of various virtual humans across multiple media such as movies, advertisements, broadcasts, games, and social networking services (SNS). In particular, in the advertising marketing sector centered around virtual influencers, virtual humans have already proven to be an important promotional tool for businesses in terms of time and cost efficiency. In Korea, the virtual influencer market is in its nascent stage, and both large corporations and startups are preparing to launch new services related to virtual influencers without clear boundaries. However, due to the lack of public disclosure of the development process, they face the situation of having to incur significant expenses. To address these requirements and challenges faced by businesses, this paper implements a photogrammetry-based facial capture system for creating realistic virtual humans and explores the use of these models and their application cases. The paper also examines an optimal workflow in terms of cost and quality through MetaHuman modeling based on Unreal Engine, which simplifies the complex CG work steps from facial capture to the actual animation process. Additionally, the paper introduces cases where virtual humans have been utilized in SNS marketing, such as on Instagram, and demonstrates the performance of the proposed workflow by comparing it with traditional CG work through an Unreal Engine-based workflow.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

A Case Study of Software Architecture Design by Applying the Quality Attribute-Driven Design Method (품질속성 기반 설계방법을 적용한 소프트웨어 아키텍처 설계 사례연구)

  • Suh, Yong-Suk;Hong, Seok-Boong;Kim, Hyeon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.121-130
    • /
    • 2007
  • in a software development, the design or architecture prior to implementing the software is essential for the success. This paper presents a case that we successfully designed a software architecture of radiation monitoring system (RMS) for HANARO research reactor currently operating in KAERI by applying the quality attribute-driven design method which is modified from the attribute-driven design (ADD) introduced by Bass[1]. The quality attribute-driven design method consists of following procedures: eliciting functionality and quality requirements of system as architecture drivers, selecting tactics to satisfy the drivers, determining architectures based on the tactics, and implementing and validating the architectures. The availability, maintainability, and interchangeability were elicited as duality requirements, hot-standby dual servers and weak-coupled modulization were selected as tactics, and client-server structure and object-oriented data processing structure were determined at architectures for the RMS. The architecture was implemented using Adroit which is a commercial off-the-shelf software tool and was validated based on performing the function-oriented testing. We found that the design method in this paper is an efficient method for a project which has constraints such as low budget and short period of development time. The architecture will be reused for the development of other RMS in KAERI. Further works are necessary to quantitatively evaluate the architecture.

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Performance of Uncompressed Audio Distribution System over Ethernet with a L1/L2 Hybrid Switching Scheme (L1/L2 혼합형 중계 방법을 적용한 이더넷 기반 비압축 오디오 분배 시스템의 성능 분석)

  • Nam, Wie-Jung;Yoon, Chong-Ho;Park, Pu-Sik;Jo, Nam-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we propose a Ethernet based audio distribution system with a new L1/L2 hybrid switching scheme, and evaluate its performance. The proposed scheme not only offers guaranteed low latency and jitter characteristics that are essentially required for the distribution of high-quality uncompressed audio traffic, and but also provide an efficient transmission of data traffic on the Ethernet environment. The audio distribution system with a proposed scheme consists of a master node and a number of relay nodes, and all nodes are mutually connected as a daisy-chain topology through up and downlinks. The master node generates an audio frame for each cycle of 125us, and the audio frame has 24 time slotted audio channels for carrying stereo 24 channels of 16-bit PCM sampled audio. On receiving the audio frame from its upstream node via the downlink, each intermediate node inserts its audio traffic to the reserved time slot for itself, then relays again to next node through its physical layer(L1) transmission - repeating. After reaching the end node, the audio frame is loopbacked through the uplink. On repeating through the uplink, each node makes a copy of audio slot that node has to receive, then play the audio. When the audio transmission is completed, each node works as a normal L2 switch, thus data frames are switched during the remaining period. For supporting this L1/L2 hybrid switching capability, we insert a glue logic for parsing and multiplexing audio and data frames at MII(Media Independent Interlace) between the physical and data link layers. The proposed scheme can provide a good delay performance and transmission efficiency than legacy Ethernet based audio distribution systems. For verifying the feasibility of the proposed L1/L2 hybrid switching scheme, we use OMNeT++ as a simulation tool with various parameters. From the simulation results, one can find that the proposed scheme can provides outstanding characteristics in terms of both jitter characteristic for audio traffic and transmission efficiency of data traffics.

Comparison of Enhanced Dynamic Wedge with Physical Metal Wedge based on the Basic Dosimetric Parameters (선량계측인자에 따른 기능강화동적쐐기와 금속쐐기의 비교)

  • Lee Jeong-Woo;Hong Semie;Choi Kyoung-Sik;Chung Jin-Beom;Choe Bo-Young;Jang Hong Seok;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.70-76
    • /
    • 2005
  • For clinical implementation of Enhanced Dynamic Wedge (EDW), it is necessary to adequately analyze and commission its dosimetric properties in comparison to common physical metal wedge (MTW). This study was implemented with the essential measurements of parameters for clinical application, such as percentage depth dose, peripheral dose, surface dose, effective wedge factor, and wedge profile. In addition, through the comparison study of EDW with open and MTW, the analysis was performed to characterize the EDW. We also compared EDW dose profiles of measured values using chamber array 24 (CA24) with calculated values using radiation treatment planning system. PDDs of EDW showed good agreements between $0.2\~0.5\%$ of open beam, but $2\%$ differences with MTW. In the result of the measurements of peripheral dose, it was shown that MTW was about $1\%$ higher than open field and EDW. The surface doses of $60^{\circ}$ MTW showed 10% lower than the others. We found that effective wedge factor of EDW had linear relationships according to Y jaw sizes and was independent of X jaw sizes and was independent of X jaw sizes and asymmetric Y jaw opening. In comparison with measured values and calculate values from Golden-STT based radiation treatment planning system (RTP system), it showed very good agreement within difference of $1\%$. It could be concluded that EDW is a very reliable and useful tool as a beam modification substitute for conventional MTW.

  • PDF

A Study on the Component-based GIS Development Methodology using UML (UML을 활용한 컴포넌트 기반의 GIS 개발방법론에 관한 연구)

  • Park, Tae-Og;Kim, Kye-Hyun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.2 s.6
    • /
    • pp.21-43
    • /
    • 2001
  • The environment to development information system including a GIS has been drastically changed in recent years in the perspectives of the complexity and diversity of the software, and the distributed processing and network computing, etc. This leads the paradigm of the software development to the CBD(Component Based Development) based object-oriented technology. As an effort to support these movements, OGC has released the abstract and implementation standards to enable approaching to the service for heterogeneous geographic information processing. It is also common trend in domestic field to develop the GIS application based on the component technology for municipal governments. Therefore, it is imperative to adopt the component technology considering current movements, yet related research works have not been made. This research is to propose a component-based GIS development methodology-ATOM(Advanced Technology Of Methodology)-and to verify its adoptability through the case study. ATOM can be used as a methodology to develop component itself and enterprise GIS supporting the whole procedure for the software development life cycle based on conventional reusable component. ATOM defines stepwise development process comprising activities and work units of each process. Also, it provides input and output, standardized items and specs for the documentation, detailed instructions for the easy understanding of the development methodology. The major characteristics of ATOM would be the component-based development methodology considering numerous features of the GIS domain to generate a component with a simple function, the smallest size, and the maximum reusability. The case study to validate the adoptability of the ATOM showed that it proves to be a efficient tool for generating a component providing relatively systematic and detailed guidelines for the component development. Therefore, ATOM would lead to the promotion of the quality and the productivity for developing application GIS software and eventually contribute to the automatic production of the GIS software, the our final goal.

  • PDF