DOI QR코드

DOI QR Code

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning

CBCT와 Simulation CT를 이용한 치료계획의 선량비교

  • 김대영 (중앙대학교병원 방사선종양학과) ;
  • 최지원 (전주대학교 방사선학과) ;
  • 조정근 (전주대학교 방사선학과)
  • Published : 2009.12.28

Abstract

The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

최근의 방사선치료용 선형가속기에 부착된 진단용 kV 에너지 영역의 X선 선원과 아모퍼스 실리콘(a-Si)의 검출기로 구성된 온보드영상장치(OBI)를 이용하여 콘빔 전산화단층촬영 영상(CBCT)획득이 가능하다. CBCT영상을 이용하여 치료계획을 세우게 되면 치료실에서 CT영상 촬영이 가능해짐으로써 고식적 치료환자들의 부담이 많이 감소될 수 있고 더 나아가 선량을 재계산하여 치료과정 중 치료계획 재수립도 가능하다. 본 연구에서는 CBCT를 이용한 치료계획과 기존의 모의치료용 CT를 이용한 치료계획을 비교 연구 함으로서 CBCT영상만으로 광자선 선량계산이 정확한지를 평가하고 임상에서 고식적방사선치료를 목적으로 하는 환자들을 대상으로 온라인 방사선치료계획의 가능성을 연구하였다. 선량계산에 필요한 CT수와 밀도간의 상호관계 확인을 위하여 Catphan 600 팬텀을 이용하여 교정곡선을 산출하였고 팬텀과 환자들의 모의 치료용 CT영상과 CBCT영상을 획득하여 치료계획 및 선량계산 된 결과를 비교하였다. CBCT 영상을 이용한 치료계획에서의 MU차이는 중심점에 100cGy 처방하였을 때 Phantom에서의 경우 3~4MU로 약 2.7%, 환자에서의 경우 1~3MU로 약 2.5% 이하로 차이가 났다. 팬텀과 환자에서의 Monitor unit(MU)차이는 2.7%, 2.5% 이내였으나, CBCT영상의 경우 검출기의 크기의 제약 및 환자의 불수의적인 움직임에 의하여 전자밀도가 큰 물질에서 산란선과 artifact의 발생이 크게 증가한다. 따라서 뇌 및 폐 영역의 치료계획시 선량의 오차가 더 커질 수 있어 이에 대한 주의가 요구된다. 치료시작 전 CBCT 영상을 획득하여 환자의 자세와 내부 장기의 위치를 보정하고 선량을 재계산하여 치료계획을 재수립하는 적응방사선치료(ART)를 시행하기 위해서는 산란선과 움직임에 의한 artifact의 감소방안이 마련되어야 할 것으로 사료된다.

Keywords

References

  1. V. D. Jacob, The modern technology of radiation oncology, 1999.
  2. D. Letourneau, R. Wong, D. Moseley, et al., "Online planning and delivery technique for radiotherapy of spine metastases using cone-beam CT: Image quality and system performance", Int. J. Radiation Oncology Biol Phys., 67, pp.1229-1237, 2007. https://doi.org/10.1016/j.ijrobp.2006.09.058
  3. D. Jaffray, D. Drake, M. Moreau, et al., "A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets", Int. J. Radiation Oncology Biol Phys., 45, pp.773-789, 1999. https://doi.org/10.1016/S0360-3016(99)00118-2
  4. C. Wu, R. Jeraj, G. Olivera, et al., "Reoptimization in adaptive radiothrapy", Phy. Med. Biol., 47, pp. 3181-3195, 2002. https://doi.org/10.1088/0031-9155/47/17/309
  5. S. Yoo, F-F. Yin, "Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning", Int. J. Radiation Oncology Biol Phys., 66, pp.1553-1561, 2006. https://doi.org/10.1016/j.ijrobp.2006.08.031
  6. Y. Yang, E. Schreibmann, T. Li, C. Wang, L. Xing., "Evaluation of on-board kV cone beam CT(CBCT)-based dose calculation", Phy. Med. Biol., 52, pp.685-705, 2007. https://doi.org/10.1088/0031-9155/52/3/011
  7. G. Hounsfield, "Computerized transverse axial scanning(tomography) 1. Description of system", Brit. J. Radiol., 46, pp.1016-1022, 1973. https://doi.org/10.1259/0007-1285-46-552-1016
  8. H. Hu, HD. He, WD. Foley, SH. Fox., "Four multidetector-row helical CT : image quality and volume coverage speed", Radiology, 215, pp.55-62, 2000. https://doi.org/10.1148/radiology.215.1.r00ap3755
  9. RA. Rob, "High-speed three-dimensional computed tomography and multi-dimensional display on the heart, lung, and circulation", In:Fullerton GD, Zagzebski JA(eds.), AAPM monography No.6., The American Institute of Physics. Medical Physics of CT and ultrasound. New York, pp.656-702 1980.
  10. 최용석, 김규태, 황의환, "Cone beam형 전산화단층영상의 원리", 대한구강악안면방사선학회지, 36 권, pp.123-129, 2006.
  11. SJ. Thomas, "Relative electron density calibration of CT scanner for radiotherapy treatment planning", Br. J. Radiol.,. 72, pp.781-786, 1999. https://doi.org/10.1259/bjr.72.860.10624344
  12. J. Battista, W. Rider, Dyk. Van, "Computed tomography for radiotherapy planning", Int. J. Radiat Oncol Biol. Phys., 6, pp.99-107, 1980. https://doi.org/10.1016/0360-3016(80)90211-4
  13. C. Constantinou, J. Harrington, L. DeWerd,, "An electron density calibration phantom for CT-based treatment planning computers", Med. Phys., 19, pp.325-327, 1991. https://doi.org/10.1118/1.596862