• Title/Summary/Keyword: Tomato cultivars and lines

Search Result 8, Processing Time 0.022 seconds

Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum (토마토 유전자원의 Ralstonia solanacearum에 의한 풋마름병 저항성 평가)

  • Jung, Eun Joo;Joo, Hae Jin;Choi, Soo Yeon;Lee, Seung Yeup;Jung, Yong Hoon;Lee, Myung Hwan;Kong, Hyun Gi;Lee, Seon-Woo
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.253-258
    • /
    • 2014
  • This study was conducted to evaluate tomato plant resistance against bacterial wilt by Ralstonia solanacearum using tomato cultivars or tomato breeding lines maintained in RDA-Genebank of Rural Development Administration and to select resistant tomato lines for breeding purpose. We evaluated the disease responses of a total of 13 cultivars and 39 breeding lines from RDA-Genebank using R. solanacearum SL341 strain, which is a representative strain in Korea. Tomato cultivar Hawaii 7996 and Moneymaker were used as a resistant control plant and a susceptible control plant, respectively. A total of 32 cultivars were susceptible and 10 cultivars showed various disease response suggesting resistant phenotype segregation in the lines. Five commercial cultivars and 5 breeding lines exhibited strong resistance to bacterial wilt by the SL341 strain. These 5 breeding lines might be used for further study of plant defense response against bacterial wilt and cloning of the resistance gene from tomato plants. Ultimately, the selected lines could be used for tomato breeding to generate bacterial wilt resistant tomato plants.

Evaluation of Tomato Genetic Resources for the Development of Resistance Breeding Lines against Late Blight (잎마름역병 저항성 육종을 위한 토마토 유전자원의 저항성 평가)

  • Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • Occurrence of tomato late blight (Phytophthora infestans) has caused significant losses in tomato yield in all over the world. Evaluation of the level of resistance in tomato gene resources for main breeding and initiation of the resistance breeding program are important for control of this disease. Resistant assay of 78 tomato cultivars/lines to late blight in pots and field experiment was carried out under controlled and natural conditions in 2009. All commercial cultivars including 'Legend' were susceptible. However, 10 lines including KNU-2, KNU-6-1, KNU-11, KNU-13, KNU-14-1 lines distributed from University of California, Riverside and L3708, $AV107-4{\times}L3708$, $07-15{\times}L3708$, $BS67{\times}L3708$ lines which have resistant gene Ph-3 and $06-9-62A{\times}06-9-62A$ were highly resistant to late blight. These highly resistant lines can be used as resources of resistance to late blight in a tomato breeding program in future.

Application of Disease Resistance Markers for Developing Elite Tomato Varieties and Lines

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Cho, Hwa-Jin;Lee, Kyung-Ah;Her, Nam-Han;Lee, Jang-Ha;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.336-344
    • /
    • 2011
  • Using the abundant available information about the tomato genome, we developed DNA markers that are linked to disease resistant loci and performed marker-assisted selection (MAS) to construct multi-disease resistant lines and varieties. Resistance markers of Ty-1, T2, and I2, which are linked to disease resistance to Tomato yellow leaf curl virus (TYLCV), Tomato mosaic virus (ToMV), and Fusarium wilt, respectively, were developed in a co-dominant fashion. DNA sequences near the resistance loci of TYLCV, ToMV, and Fusarium wilt were used for primer design. Reported candidate markers for powdery mildew-resistance were screened and the 32.5Cla marker was selected. All four markers (Ty-1, T2, I2, and 32.5Cla) were converted to cleavage amplification polymorphisms (CAPS) markers. Then, the CAPS markers were applied to 96 tomato lines to determine the phenetic relationships among the lines. This information yielded clusters of breeding lines illustrating the distribution of resistant and susceptible characters among lines. These data were utilized further in a MAS program for several generations, and a total of ten varieties and ten inbred lines were constructed. Among four traits, three were introduced to develop varieties and breeding lines through the MAS program; several cultivars possessed up to seven disease resistant traits. These resistant trait-related markers that were developed for the tomato MAS program could be used to select early stage seedlings, saving time and cost, and to construct multi-disease resistant lines and varieties.

Construction of Tomato yellow leaf curl virus Clones for Resistance Assessment in Tomato Plants (토마토 작물의 TYLCV 저항성 평가에 이용할 수 있는 감염성 클론 개발)

  • Choi, Seung Kook;Choi, Hak Soon;Yang, Eun Young;Cho, In Sook;Cho, Jeom Deog;Chung, Bong Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.246-254
    • /
    • 2013
  • Five isolates of Tomato yellow leaf curl virus (TYLCV) collected from various regions of Korea were amplified using PCR and determined the sequences of full-length genome, respectively. The PCR-amplified DNA of each TYLCV isolate was introduced into a binary vector to construct infectious clone containing 1.9 copies of the corresponding viral genome. Various cultivars and breeding lines of tomato were inoculated with Agrobacterium tumefaciens harboring infectious clone of each TYLCV isolate to assess resistance against TYLCV. Susceptible cultivar 'Super-sunread' revealed typical yellowing and narrowing of the upper leaves. In contrast, breeding linesTY12, GC9, GC171, and GC173, which contained the TY-1 and/or TY-3 genes that confer resistance against TYLCV in nature, were completely symptomless, suggesting that the lines were resistant to challenging TYLCV isolates. Symptoms of TYLCV in susceptible tomato cultivars are significantly different from those of TYLCV in the resistant tomato cultivars at 30 days after agroinfiltration. Although genomic DNAs of TYLCV were detected from the breeding lines TY12, GC9, GC171, and GC173 using real-time PCR analysis with specific primers, levels of TYLCV DNA accumulation in the resistant breeding lines were much lower than those of TYLCV DNA accumulation in susceptible tomato cultivars. Similar symptom severity and levels of TYLCV DNA accumulation were observed from TYLCV infections mediated by Bemisia tabaci in the resistant and susceptible tomato cultivars. Concentration of agrobacterium did not affect the response of tomato cultivars against TYLCV inoculation. Taken together, these results suggest that TYLCV inoculation via agroinfiltration is as effective as inoculation through Bemisia tabaci and is useful for breeding programs of TYLCV-resistant tomato.

Development of a SNP Marker Set for Tomato Cultivar Identification (토마토 품종 구분을 위한 SNP 분자표지 개발)

  • Bae, Joong-Hwan;Han, Yang;Jeong, Hee-Jin;Kwon, Jin-Kyung;Chae, Young;Choi, Hak-Soon;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.627-637
    • /
    • 2010
  • The consumption of tomato has greatly increased recently in Korea, and a large number of tomato cultivars are commercially available in the market. However, identification of tomato cultivars by morphological traits is extremely difficult because of the narrow genetic diversity of breeding lines. Therefore, it is necessary to develop molecular markers for cultivar identification in tomato. In this study, we surveyed single nucleotide polymorphism (SNP), and developed SNP marker sets for tomato cultivar identification. SNP markers were developed based on conserved ortholog set II (COSII) and intron-based markers derived from pepper EST sequences, and marker polymorphism was tested using high-resolution melting (HRM) analysis. A total of 628 primer sets was tested, and 417 primer sets amplifying single bands were selected. Of the 417 primer sets, 70 primer sets showing HRM polymorphism among 4 inbred lines were selected. Eleven markers were selected from the 70 primer sets and subjected to cultivar identification analysis. Thirty two commercial tomato cultivars were successfully identified using the marker set.

Quantitative analysis of water-soluble vitamins and polyphenolic compounds in tomato varieties (Solanum lycopersicum L.) (토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석)

  • Kim, Daen;Son, Beunggu;Choi, Youngwhan;Kang, Jumsoon;Lee, Yongjae;Je, Beungil;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Tomato fruit quality is determined by the contents of various functional metabolites in addition to fruit appearance. To develop tomato cultivars with higher amounts of functional compounds, an efficient quantification method is required to identify the natural variations in the compounds in the tomato germplasm. In this study, we investigated tomato varieties, which included 23 inbred lines and 12 commercial F1 cultivars, for their contents of seven watersoluble vitamins (vitamin C, vitamins B1, B2, B3, B5, B6, and B9) and five polyphenolic compounds (quercetin, rutin, kaempferol, myricetin, and naringenin chalcone). The results of high performance liquid chromatography and liquid chromatography-mass spectrometry showed that vitamin C and naringenin chalcone were the major water-soluble vitamins and polyphenolic compounds, respectively, and their abundance was highly variable depending on the cultivar. By contrast, the contents of vitamin B1, quercetin, and kaempferol were lowest among the cultivars. With regard to the relationship between metabolic compounds and fruit characteristics, a significant association was found in fruit size, indicating that cherry tomato varieties contain higher amounts of the compounds compared to large fresh-type varieties. However, no direct association was detected in fruit color, except for naringenin chalcone. The results of this study provide new insights on the quantification of metabolic compounds and the selection of breeding materials, which are prerequisites for the development of functional tomato varieties.

Evaluation of Germplasm and Development of SSR Markers for Marker-assisted Backcross in Tomato (분자마커 이용 여교잡 육종을 위한 토마토 유전자원 평가 및 SSR 마커 개발)

  • Hwang, Ji-Hyun;Kim, Hyuk-Jun;Chae, Young;Choi, Hak-Soon;Kim, Myung-Kwon;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.557-567
    • /
    • 2012
  • This study was conducted to achieve basal information for the development of tomato cultivars with disease resistances through marker-assisted backcross (MAB). Ten inbred lines with TYLCV, late blight, bacterial wilt, or powdery mildew resistance and four adapted inbred lines with superior horticultural traits were collected, which can be useful as the donor parents and recurrent parents in MAB, respectively. Inbred lines collected were evaluated by molecular markers and bioassay for confirming their disease resistances. To develop DNA markers for selecting recurrent parent genome (background selection) in MAB, a total of 108 simple sequence repeat (SSR) primer sets (nine per chromosome at average) were selected from the tomato reference genetic maps posted on SOL Genomics Network. Genetic similarity and relationships among the inbred lines were assessed using a total of 303 polymorphic SSR markers. Similarity coefficient ranged from 0.33 to 0.80; the highest similarity coefficient (0.80) was found between bacterial wilt-resistant donor lines '10BA333' and '10BA424', and the lowest (0.33) between a late blight resistant-wild species L3708 (S. pimpinelliforium L.) and '10BA424'. UPGMA analysis grouped the inbred lines into three clusters based on the similarity coefficient 0.58. Most of the donor lines of the same resistance were closely related, indicating the possibility that these lines were developed using a common resistance source. Parent combinations (donor parent ${\times}$ recurrent parent) showing appropriate levels of genetic distance and SSR marker polymorphism for MAB were selected based on the dendrogram. These combinations included 'TYR1' ${\times}$ 'RPL1' for TYLCV, '10BA333' or '10BA424' ${\times}$ 'RPL2' for bacterial wilt, and 'KNU12' ${\times}$ 'AV107-4' or 'RPL2' for powdery mildew. For late blight, the wild species resistant line 'L3708' was distantly related to all recurrent parental lines, and a suitable parent combination for MAB was 'L3708' ${\times}$ 'AV107-4', which showed a similarity coefficient of 0.41 and 45 polymorphic SSR markers.

A Gene-based dCAPS Marker for Selecting old-gold-crimson (ogc) Fruit Color Mutation in Tomato (토마토 과색 돌연변이 유전자(old-gold-crimson) 선발을 위한 dCAPS 분자표지 개발)

  • Park, Young-Hoon;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.152-155
    • /
    • 2009
  • The old-gold-crimson ($og^c$) fruit color mutation produces deep red tomato fruit with high lycopene content. age is a null mutation allele of lycopene-${\beta}$-cyclase (Crt-b) gene (B locus) that converts lycopene to ${\beta}$-carotene in the cartenoid biosynthesis pathway in tomato. Breeding of high lycopene tomato cultivars can be accelerated by marker-assisted selection (MAS) for introgression of $og^c$ allele by using a gene-based DNA marker. In order to develop a marker, single nucleotide deletion of adenine(A) with. in a poly-A repeat that has been known to be responsible for frame-shift mutation of $og^c$ was confirmed by resequencing mutant allele and wild-type allele at B locus of several tomato lines. For allele discrimination and detection of $og^c$, derived CAPS (dCAPS) approach was used by designing a primer that artificially introduced restriction enzyme recognition site of Hin fI in PCR products from $og^c$ allele. This dCAPS marker is co-dominant gene-based PCR marker that can be efficiently used for MAS breeding program aiming the development of high lycopene tomato.