Development of a SNP Marker Set for Tomato Cultivar Identification

토마토 품종 구분을 위한 SNP 분자표지 개발

  • Bae, Joong-Hwan (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Han, Yang (School of Life science, Liaoning University) ;
  • Jeong, Hee-Jin (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kwon, Jin-Kyung (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Chae, Young (National Institute of Horticultural & Herbal Science) ;
  • Choi, Hak-Soon (National Institute of Horticultural & Herbal Science) ;
  • Kang, Byoung-Cheorl (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
  • 배중환 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 한양 (요녕대학교 생명과학부) ;
  • 정희진 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 권진경 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 채영 (농촌진흥청 국립원예특작과학원) ;
  • 최학순 (농촌진흥청 국립원예특작과학원) ;
  • 강병철 (서울대학교 농업생명과학대학 식물생산과학부)
  • Received : 2010.01.29
  • Accepted : 2010.04.06
  • Published : 2010.08.31

Abstract

The consumption of tomato has greatly increased recently in Korea, and a large number of tomato cultivars are commercially available in the market. However, identification of tomato cultivars by morphological traits is extremely difficult because of the narrow genetic diversity of breeding lines. Therefore, it is necessary to develop molecular markers for cultivar identification in tomato. In this study, we surveyed single nucleotide polymorphism (SNP), and developed SNP marker sets for tomato cultivar identification. SNP markers were developed based on conserved ortholog set II (COSII) and intron-based markers derived from pepper EST sequences, and marker polymorphism was tested using high-resolution melting (HRM) analysis. A total of 628 primer sets was tested, and 417 primer sets amplifying single bands were selected. Of the 417 primer sets, 70 primer sets showing HRM polymorphism among 4 inbred lines were selected. Eleven markers were selected from the 70 primer sets and subjected to cultivar identification analysis. Thirty two commercial tomato cultivars were successfully identified using the marker set.

최근 들어 우리나라에서 토마토 소비가 급증하고 있으며 많은 토마토 품종이 시장에서 거래되고 있다. 그러나 토마토 품종 육성에 이용되는 부모 계통의 유전적 다양성이 낮아 형태적인 특성에 의한 토마토 품종의 구분은 매우 어려운 현실이다. 이에 따라 토마토의 품종을 구별해 낼 수 있는 분자표지의 개발이 필요한 실정이다. 본 연구에서는 SNP를 탐색하고 토마토 품종 구분을 위한 SNP 마커를 개발하였다. SNP분자표지는 고추 유전체 서열로부터 파생된 COS II 분자표지와 인트론 기반 분자표지를 기반으로 선발되었으며, HRM분석을 통해 다형성을 테스트 하였다. 전체 628개의 프라이머 조합 가운데 PCR을 통해 크기가 500bp 이하의 단일 밴드가 증폭된 417개의 프라이머 조합을 선발하였다. 417개의 프라이머 조합을 이용해 4개의 토마토 계통을 대상으로 HRM 분석을 실시하였으며, 다형성을 보인 70개의 프라이머 조합을 선발하였다. 70개의 프라이머 조합을 이용하여 32개의 토마토 품종을 대상으로 HRM 분석을 실시하였다. HRM분석을 통해 총 11개의 SNP 분자표지가 선발되었으며, 이 분자표지를 이용해 시판중인 32개의 토마토 품종을 모두 구분할 수 있었다.

Keywords

References

  1. Balogh, K., A. Patocs, J. Majnik, K. Racz, and L. Hunyady. 2004. Genetic screening methods for the detection of mutations responsible for multiple endocrine neoplasia type 1. Mol. Genet. Metab. 83:74-81. https://doi.org/10.1016/j.ymgme.2004.08.013
  2. Ching, A., K.S. Caldwell, M. Jung, M. Dolan, O.S. Smith, S. Tingey, M. Morgante, and A.J. Rafalski. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 3:19. https://doi.org/10.1186/1471-2156-3-19
  3. Cooke, R.J., G.M.M. Bredemeijer, M.W. Ganal, R. Peeters, P. Isaac, S. Rendell, J. Jackson, M.S. Roder, V. Korzun, K. Wendehake, T. Areshchenkova, M. Dijcks, D. Laborie, L. Bertrand, and B. Vosman. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132:331-341. https://doi.org/10.1023/A:1025046919570
  4. Desai, U.J. and P.K. Pfaffle. 1995. Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. Biotechniques 19:780-782, 784.
  5. Feltus, F.A., H.P. Singh, H.C. Lohithaswa, S.R. Schulze, T.D. Silva, and A.H. Paterson. 2006. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol. 140:1183-1191. https://doi.org/10.1104/pp.105.074203
  6. Fourmann, M., P. Barret, N. Froger, C. Baron, F. Charlot, R. Delourme, and D. Brunel. 2002. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor. Appl. Genet. 105:1196-1206. https://doi.org/10.1007/s00122-002-1040-z
  7. Gundry, C.N., J.G. Vandersteen, G.H. Reed, R.J. Pryor, J. Chen, and C.T. Wittwer. 2003. Amplicon melting analysis with labeled primers: A closed-tube method for differentiating momozygotes and heterozygotes. Clin. Chem. 49:396-406. https://doi.org/10.1373/49.3.396
  8. He, C., V. Poysa, and K. Yu. 2003. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivar. Theor. Appl. Genet. 106:363-373.
  9. Hoffmann, M., J. Hurlebaus, and C. Weike. 2007. Novel method for high-performance melting curve analysis using the $LightCycler^{\circledR}$ 480 system. Biochemica 1:17-19.
  10. Kim, S. and S. Misra. 2007. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9:289-320. https://doi.org/10.1146/annurev.bioeng.9.060906.152037
  11. Kwon, Y.S., E.K. Park, K.M. Bae, S.I. Yi, S.G. Park, and I.H. Cho. 2006. Use of simple sequence repeat (SSR) markers for variety identification of tomato (Lycopersicon esculentum). J. Plant Biotechnol. 33:289-295. https://doi.org/10.5010/JPB.2006.33.4.289
  12. Labate, J.A., L.D. Robertson, F. Wu, and S.D. Tanksley. 2009. EST, COS II, and arbitrary gene markers give similar estimates of nucleotide diversity in cultivated tomato (Solanum lycopersicum L.). Theor. Appl. Genet. 188:1005-1014.
  13. Lehmensiek, A., M.W. Sutherland, and R.B. McNamara. 2008. The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor. Appl. Genet. 117:721-728. https://doi.org/10.1007/s00122-008-0813-4
  14. Mackay, J.F., C.D. Wright, and R.G. Bonfiglioli. 2008. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8. https://doi.org/10.1186/1746-4811-4-8
  15. Miller, J.C. and S.D. Tanksley. 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80:437-448.
  16. Montgomery, J. C.T. Wittwer, P. Robert, and Z. Luming. 2007. Simultaneous mutation scanning and genotyping by high resolution DNA melting analysis. Nat. Protoc. 2:59-66.
  17. Nesbitt, T.C. and S.D. Tanksley. 2002. Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365-379.
  18. Oefner, P.J., and P.A Underhill. 1995. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am. J. Hum. Genet. 57:A266. https://doi.org/10.1002/ajmg.1320570231
  19. Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766-2770. https://doi.org/10.1073/pnas.86.8.2766
  20. Park, J.I., H.T. Kim, J.K. Kim, D.Y. Shin, and I.S. Nou. 2000. Identification of species using phenotypic traits and RAPD analysis in introduced tomato allies. Kor. J. Breed. 32:64-73.
  21. Park, S.W., S.J. An, H.B. Yang, J.K. Kwon, and B.C. Kang. 2009. Optimization of high resolution melting analysis and discovery of single nucleotide polymorphism in Capsicum. Hort. Environ. Biotechnol. 50:31-39.
  22. Park, Y.H., M.A.L. West, and D.A. St. Clair. 2004. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopesicon esculentum L.). Genome 47:510-518. https://doi.org/10.1139/g04-004
  23. Prince, J.P., T. Zhang, E.R. Radwanski, and M.M. Kyle. 1997. A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). HortScience. 32:937-939.
  24. Qian, W., S. Ge, and D.Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102:440-449. https://doi.org/10.1007/s001220051665
  25. Rapley, R. and S.E. Harbron. 2004. Molecular Analysis and Genome Discovery. Wiley, Sussex, UK.
  26. Reed, G.H. and C.T. Wittwer. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 50:1748-1754. https://doi.org/10.1373/clinchem.2003.029751
  27. Stevens, M.R., E.M. Lamb, and D.D. Rhoads. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor. Appl. Genet. 90:451-456.
  28. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mole. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  29. The Arabidopsis Genome Initiative. 2001. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature (London) 408:196-815.
  30. Van Deynze, A.E., K. Stoffel, C.R. Buell. A. Kozik, J. Liu, E. Van der Knaap. and D. Francis. 2007a. Diversity in conserved genes in tomato. BMC Genomics 8:465-473. https://doi.org/10.1186/1471-2164-8-465
  31. Van Deynze, A.E., T.A. Wilkins, K. Stoffel, M. Lee, D. Stelly, and A. Kozik. 2007b. A set of informative markers designed specifically for breeding cotton. In Plant and Animal Genome XV. San Diego, CA. Scherago International.
  32. Van Ooijen, J.W., J.M. Sandbrink, M. Vrielink, R. Verkerk, P. Zabel, and P. Lindhout. 1994. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Genet. 89:1007-1013.
  33. Wang, D.G., J.B. Fan, C.G. Siao, A. Berno, and P. Young. 1998. Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome. Science 280:1077-1082. https://doi.org/10.1126/science.280.5366.1077
  34. Wu, S.B., M.G. Wirthensohn, P. Hunt, J.P. Gibson, and M. Sedgley. 2008. High resolution melting analysis of almond SNPs derived from ESTs. Theor. Appl. Genet. 118:1-14. https://doi.org/10.1007/s00122-008-0870-8