• Title/Summary/Keyword: Tolerant to salinity

Search Result 88, Processing Time 0.027 seconds

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.) (염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이)

  • Im, Ju Sung;Cho, Ji Hong;Cho, Kwang Soo;Chang, Dong Chil;Jin, Yong Ik;Yu, Hong Seob;Kim, Wha Yeong
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.818-829
    • /
    • 2016
  • This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.

The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis

  • Lim, Chae Woo;Kim, Sang Hee;Choi, Hyong Woo;Luan, Sheng;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.684-691
    • /
    • 2019
  • Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.

Screening of saline tolerant plants and development of biological monitoring technique for saline stress . 1. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. (내염성 식물의 탐색 및 생물학적 염해 모니터링 기술의 개발 1. 염해지 식생분석 및 식물종의 내염성 평가)

  • Kang, Byeung-Hoa;Shim, Sang-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 1998
  • This experiment was conducted to classify the plant species occurring in the saline reclaimed land by saline tolerance. The vegetation of reclaimed land was composed of various plant species from halophyte to glycophyte showing different saline tolerances. In the investigated saline region, reclaimed land of Youngjong island, Inchun city, 175 species belonging to 32 families were found. Our survey was carried out in two region, having different salinity due to different desalinization. The electricalconductivity (EC) of more saline region showed 48.0mS/cm nd the other region showed 13.0mS/cm. It is assumed that intensity of precipitation and runoff of rainfall may cause salinity gradient in the investigated region. The plant species occurred in the experimental region were classified as 72 species of annual, 42 species of biennial, and 61 species of perennial according to life cycle. For knowing relationship between vegetation of saline region and saline tolerance of occurring species, we tested the saline susceptibility of plant species collected at the saline regions. Testing plants were cultured by nutrient solution containing 200 mM NaCl, the critical concentration of survival in glycophytes. The saline tolerance was graded by the growing capacity in the sand-culture system. The more saline-tolerant species screened by sand culture were Atriplex gmelini, Suaeda asparagoides, Aster tripolium, Suaeda maritima, Salicornia herbacea, and Suaeda japonica. The most saline tolerant family was Chenopodiaceae. Poaceae, Cyperaceae, and Brassicaceae showed relatively high tolerance to saline stress. In the course of growth under the high saline condition, the most noticeable change was the darkening of leaves by increasing of chlorophyll content. The chlorophyll contents were increased with saline stress in most species.

  • PDF

Diversity and Saline Resistance of Endophytic Fungi Associated with Pinus thunbergii in Coastal Shelterbelts of Korea

  • Min, Young Ju;Park, Myung Soo;Fong, Jonathan J.;Quan, Ying;Jung, Sungcheol;Lim, Young Woon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.324-333
    • /
    • 2014
  • The Black Pine, Pinus thunbergii, is widely distributed along the eastern coast of Korea and its importance as a shelterbelt was highlighted after tsunamis in Indonesia and Japan. The root endophytic diversity of P. thunbergii was investigated in three coastal regions; Goseong, Uljin, and Busan. Fungi were isolated from the root tips, and growth rates of pure cultures were measured and compared between PDA with and without 3% NaCl to determine their saline resistance. A total of 259 isolates were divided into 136 morphotypes, of which internal transcribed spacer region sequences identified 58 species. Representatives of each major fungi phylum were present: 44 Ascomycota, 8 Zygomycota, and 6 Basidiomycota. Eighteen species exhibited saline resistance, many of which were Penicillium and Trichoderma species. Shoreline habitats harbored higher saline-tolerant endophytic diversity compared with inland sites. This investigation indicates that endophytes of P. thunbergii living closer to the coast may have higher resistance to salinity and potentially have specific relationships with P. thunbergii.

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A.;Shah, M. Kashif;Naveed, M.;Akhter, M. Javed
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1288-1294
    • /
    • 2010
  • Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.

Rice genotype, parental lineage and physiological tolerance to soil salinity shapes the community structure of rice seed bacterial endophytes

  • Walitang, Denver I.;Kim, Kiyoon;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.342-342
    • /
    • 2017
  • Rice seeds are a home to endophytic bacterial communities which serve as a source of the plant's endophytes. As rice undergo physiological and adaptive modifications through cross breeding in the process of attaining salinity tolerance, this may also lead to changes in the endophytic bacterial community especially those residing in the seeds. This study explores the community structure of seed bacterial endophytes as influenced by rice parental lineage, genotype and physiological adaptation to salinity stress. Endophytic bacterial diversity was studied through culture dependent technique, cloning and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The richness of ribotypes ranges from 5-14 T-RFs corresponding to major groups of bacterial endophytes in the seeds. Endophytic bacterial diversity of the salt-sensitive IR29 is significantly more diverse compared to those of salt-tolerant cultivars. Proteobacteria followed by Actinobacteria and Firmicutes dominated the overall endophytic bacterial communities of the indica rice seeds based on 16S rDNA analysis of clones and isolates. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Multivariate analysis showed that the bacterial endophytic community and diversity of rice seeds are mainly influenced by their host's genotype, physiological adaptation to salt stress and parental lineage.

  • PDF

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Influence of Salinity Treatment on Seed Germination and Polyamine Synthesis in Barnyard Grass(Echinochloa hispidula) (강피종자의 발아와 폴리아민 생합성에 대한 염류의 영향)

  • Yun, Sol;Lee, Su-Yeon;Lim, Hyo-Jin;Shim, Myoung-Bo;Sung, Jwa-Kyung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • To illuminate the physiological response to salinity, barnyard grass (Echinochloa hispidula) was germinated with high concentration of NaCl and KCL. Duration and promptness of seed germination were observed. Under salt stress, lipid peroxidation and polyamine biosynthesis were also analyzed. It appeared that high salt treatments per se did not provoke an inhibition of germination although the process of germination was significantly delayed. In context of lipid peroxidation and polyamine biosynthesis, we would imply that barnyard grass is tolerant to salinity. The increase in lipid peroxidation and putrescine content was prolonged only for 1 day after saline treatment. It could be concluded that these early acciimulation of putrescine and production of lipid peroxide seems to be associated with salt tolerance in the short-term. The physiological interest of these responses was discussed.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

Variation in Sodium Chloride Resistance of Cenococcum geophilum and Suillus granulatus Isolates in Liquid Culture

  • Obase, Keisuke;Lee, Jong-Kyu;Lee, Sun-Keun;Lee, Sang-Yong;Chun, Kun-Woo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.225-228
    • /
    • 2010
  • We studied the resistance of Cenococcum geophilum and Suillus granulatus isolates to NaCl during growth under axenic culture conditions. C. geophilum isolates displayed variations in NaCl resistance; mycelial growth of most isolates was inhibited above 200mM. All isolates of S. granulatus were tolerant to high NaCl content.