DOI QR코드

DOI QR Code

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping (College of Horticulture, Northwest A&F University) ;
  • Yang, Yong (College of Horticulture, Northwest A&F University) ;
  • Fang, Ming (Life Science College, Heilongjiang Bayi Agricultural University) ;
  • Wang, Fei (College of Horticulture, Northwest A&F University) ;
  • Chen, Hejie (College of Horticulture, Northwest A&F University)
  • Received : 2016.01.12
  • Accepted : 2016.07.13
  • Published : 2016.08.31

Abstract

Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

Keywords

References

  1. Acar O, Turkan I, Ozdemir F (2001) Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol Plant 3:351-356. doi:10.1007/s11738-001-0043-8
  2. Acosta-Motos JR, Diaz-Vivancos P, alvarez S, Fernandez-Garcia N, Sanchez-Blanco MJ, Hernandez JA (2015) NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J Plant Physiol 183:41-51. doi:10.1016/j.jplph.2015.05.005Adly
  3. AAM (2010) Oxidative stress and disease: an updated review. Res J Immunol 3:129-145. doi:10.3923/rji.2010.129.145
  4. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought andultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337-1344. doi:10.1046/j.1365-3040.2001.00778.x
  5. Amor NB, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plantarum 126:446-457. doi:10.1111/j.1399-3054.2006.00620.x
  6. Ashraf M, Arkam NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744-752. doi:10.1016/j.biotechadv.2009.05.026
  7. Barrs HD, Weatherley PE (1962) Are-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413-428. doi:10.1071/BI9620413
  8. Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights intoantioxidant defenses of legume root nodules. New Phytol 188:960-976. doi:10.1111/j.1469-8137.2010.03512.x
  9. Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77-84. doi:10.1016/S0168-9452(02)00338-2
  10. Carrasco-Rios Libertad, Pinto M (2014) Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn, 'Lluten - o' and 'Jubilee'. Chil J Agric Res 74:89-95. doi:10.4067/S0718-58392014000100014
  11. Chaparzadeh N, D'Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F (2004) Antioxidative responses of Calendula offıcinalis under salinity conditions. Plant Physiol Biochem 42:695-701. doi:10.1016/j.plaphy.2004.07.001
  12. Cramer GR, Alberico GJ, Schmidt C (1994) Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust J Plant Physiol 21:675-692. doi:10.1071/PP9940675
  13. Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247-257. doi:10.1016/j.envexpbot.2004.03.017
  14. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1-9. doi:10.1016 /S0168-9452(98)00025-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  15. FAO (2000) Global network on integrated soil management for sustainable use of salt-affected soils. Available at: http://www.fao.org/ag/AGL/agll/spush/intro.htm. Accessed 10 May 2004
  16. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307-319. doi:10.1093/jxb/erh003
  17. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355-364. doi:10.1034/j.1399-3054.2003.00223.x
  18. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93-100. doi:10.1104/pp.110.166181
  19. Gao JF (2000) Plant physiology laboratory technology. World Books Press, Xi'an, China, pp 101-199
  20. Gibson TS, Speirs J, Brady CJ (1984) Salt-tolerance in plants. II. In vitro translation of mRNAs from salt-tolerant and salt-sensitive plants on wheat germ ribosomes. Responses to ions and compatible organic solutes. Plant Cell Environ 7:579-587
  21. Gomez JM, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119-130. doi:10.1093/jxb/erh013
  22. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford, London
  23. Hernandez JA, Jimenez J, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853-862. doi:10.1046/j.1365-3040.2000.00602.x
  24. Hu LX, Li HY, Pang HC, Fu JM (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146-156. doi:10.1016/j.jplph.2011.08.020
  25. Ikbal FE, Hernandez JA, Barba-Espin G, Koussa T, Azizc A, Faizea M, Diaz-Vivancos P (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171:779-788. doi:10.1016/j.jplph.2014.02.006
  26. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205-209. doi:10.1007/s11738-007-0025-6
  27. Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81-89. doi:10.1007/s11738-007-0093-7
  28. Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii . Biol Plant 50:745-748. doi:10.1007/s10535-006-0121-2
  29. Lee DH, KimYS, Lee CB (2001) The inductive responses ofthe antioxidant enzymes by salt stress in the rice (Oryzasativa L.). J Plant Physiol 158:737-745. doi:10.1078/0176-1617-00174
  30. Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho J-Y, Lee S, Kim J-H, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325-335. doi:10.1016/j.plaphy.2013.05.047
  31. Lucrezia S, Angela DP, Vito C, Maria P, Nicholas AC, Vito VB, Donato DV (2012) Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34:2349-2358. doi:10.1007/s11738-012-1038-3
  32. Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157: 113-128. doi:10.1016/S0168-9452(00)00273-9
  33. Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 227:227- 231. doi:10.1007/s10535-006-0011-7
  34. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69-76. doi:10.1016/S0098-8472(02)00058-8
  35. Nakano K, Asada K (1981) Hydrogen peroxide is scavengedby ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880
  36. Nauseef WM (2008) Nox enzymes in immune cells. Semin Immunol 30:330-363. doi:10.1007/s00281-008-0117-4
  37. Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physio Plant Mol Biol 49: 249-279. doi:10.1146/annurev.arplant.49.1.249
  38. Panda SK, Khan MH (2004) Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz J Plant Physiol 16:115-118. doi:10.1590/S1677-04202004000200007
  39. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Env Saf 60:324-349. doi:10.1016/ j.ecoenv.2004.06.010
  40. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765-771. doi:10.1016/S0168-9452(01)00462-9
  41. Sarvajeet SG, Tuteja N (2010) Reactive oxygen species and antioxidant machineryin abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930. doi:10.1016/j.plaphy.2010.08.016
  42. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7-12 https://doi.org/10.1104/pp.101.1.7
  43. Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131: 399-411. doi:10.1111/j.1399-3054.2007.00970.x
  44. Shalata A, Tal M (1998) The effect of salt stress on lipidperoxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii . Physiol Plant 104:169-174. doi:10.1034/j.1399-3054.1998.1040204.x
  45. Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidant system. Physiol Plant 112:487-494. doi:10.1034/ j.1399-3054.2001.1120405.x
  46. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305-1319. doi:10.1093/jexbot/53.372.1305
  47. Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica ). Physiol Plant 109:435-442. doi:10.1034/j.1399- 3054.2000.100410.x
  48. Tao R, Sugiura A (1992) Micropropagation of Japanese persimmon (Diospyros kaki L.). In YPS Bajaj, ed, Biotechnology in agriculture and forestry, Vol. 18, High-tech and micropropagation II, Springer Verlag, Berlin, pp 424-440. doi:10.1007/978-3-642-76422-6_22
  49. Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2-9. doi:10.1016/ j.envexpbot.2009.05.008
  50. Wang XS, Han JG (2009) Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt Stress. Agric Sci China 8:431-440. doi:10.1016/S1671-2927(08)60229-1
  51. Zhang M, Fang YM, Ji YH, Jiang ZP, Wang L (2013) Effects of salt stress on ion content, antioxidant enzymes and protein profile indifferent tissues of Broussonetia papyrifera . S Afr J Bot 85:1-9577. doi: 10.1016/j.sajb.2012.11.005

Cited by

  1. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions vol.61, pp.3, 2016, https://doi.org/10.1007/s13580-020-00231-z