Influence of Salinity Treatment on Seed Germination and Polyamine Synthesis in Barnyard Grass(Echinochloa hispidula)

강피종자의 발아와 폴리아민 생합성에 대한 염류의 영향

  • Yun, Sol (Department of Plant Resources Science, Hankyong National University) ;
  • Lee, Su-Yeon (Department of Plant Resources Science, Hankyong National University) ;
  • Lim, Hyo-Jin (Department of Plant Resources Science, Hankyong National University) ;
  • Shim, Myoung-Bo (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Sung, Jwa-Kyung (Department of Agronomy, Chungbuk National University) ;
  • Kim, Tae-Wan (Department of Plant Resources Science, Hankyong National University)
  • 윤솔 (한경대학교 식물자원과학과) ;
  • 이수연 (한경대학교 식물자원과학과) ;
  • 임효진 (한경대학교 식물자원과학과) ;
  • 심명보 (한경대학교 식물생태화학연구소) ;
  • 성좌경 (충북대학교 농학과) ;
  • 김태완 (한경대학교 식물자원과학과)
  • Received : 2003.12.06
  • Accepted : 2004.01.30
  • Published : 2004.02.29

Abstract

To illuminate the physiological response to salinity, barnyard grass (Echinochloa hispidula) was germinated with high concentration of NaCl and KCL. Duration and promptness of seed germination were observed. Under salt stress, lipid peroxidation and polyamine biosynthesis were also analyzed. It appeared that high salt treatments per se did not provoke an inhibition of germination although the process of germination was significantly delayed. In context of lipid peroxidation and polyamine biosynthesis, we would imply that barnyard grass is tolerant to salinity. The increase in lipid peroxidation and putrescine content was prolonged only for 1 day after saline treatment. It could be concluded that these early acciimulation of putrescine and production of lipid peroxide seems to be associated with salt tolerance in the short-term. The physiological interest of these responses was discussed.

염류장애의 생리적 반응을 검토하고자 강피(Echinochloa hispidula) 종자를 고농도의 NaCl과 KCl 조건하에서 발아시켰다. 발아의 기간과 진전속도를 측정하였으며, 염류스트레스 조건에서의 지질과산화와 폴리아민 생합성양상을 분석하였다. 고농도 염류처리 자체는 비록 발아를 상당히 지연시킬 수는 있지만 발아를 억제하지 못하는 것으로 나타났다. 지질과산화와 폴리아민 생합성에 견주어볼 때, 강피는 염류에 내성이 것으로 사료되었다. 지질과산화와 putrescine 함량의 증가는 염류처리 후 1일 동안만 지속되었다. 이러한 결과는 초기 putrescine 증가와 지질과산화수소의 생성이 단기간 동안의 염류 내성 기작과 밀접한 관계가 있다고 결론 내릴 수 있는 근거가 되었다.

Keywords

References

  1. Basu, R., and B. Chosh. 1991. Polyamines in various rice (Oryze saliva) genotypes with respet to sodium chloride salinity. Physiol. Plant 82:575-581 https://doi.org/10.1111/j.1399-3054.1991.tb02949.x
  2. Borochov-Neon, H., and A. Borocbov. 1991. Response of melon plants to salt. I . Growth, morphology and root membrane propenties.J. Plant Physiol. 139:100-105 https://doi.org/10.1016/S0176-1617(11)80173-2
  3. Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999.Polyamines and environmental challenges: recent development Plant Sci. 140:103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  4. Boyer, J. S. 1982. Plant productivity and environment. Science 218:413
  5. Cho, J. W. 1997. Histological, and physiological characteristics of barley (Hordeum vulgare L.) seedling to NaCl stress. Ph. D. thesis,Chungnam National University, Korea
  6. Cramer, G. R., E. Esptein, and A. Launhli. 1990. Effects of sodium, potassium, calcium on salt stresses barley. I. Elemental anaysis. Physiol. Plant. 81:197-202
  7. Del Meral, A., J. Severin, A. Ramos-Connenxana, H. G. Truper, and E. A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122:165-172 https://doi.org/10.1111/j.1574-6968.1994.tb07160.x
  8. Epstein, E., J. D. Norlyn, D. W. Rush, R. W, Kingsbury, D. B. Kelly, C. A. Cunningham, and A. F. Wrona. 1980. Saline culture of crop: a genetic approach, Science 210:399-404 https://doi.org/10.1126/science.210.4468.399
  9. Erdei, L., Z. Szegletes, K. Barabas, and M. Pastenacz. 1996.Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J. Plant Physiol. 147:599-603 https://doi.org/10.1016/S0176-1617(96)80052-6
  10. Evans, P. T., and L. Malmberg. 1989. Do polyamines have roles in plant development ? Annu. Rev. Plant Physiol. 40:235-269 https://doi.org/10.1146/annurev.pp.40.060189.001315
  11. Incharoensakdi, A., and N. Wutipraditkul. 1999. Accumulation of glycine betaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica. J.Appl.Phycol. 11:515-523 https://doi.org/10.1023/A:1008186309006
  12. Kaufman, M. R. 1969. Effects of water potential of germination of lettuce, sunflower, and citrus seeds. Can. J. Bot. 49:410-515
  13. Kakkar, R. K., S. Bhaduri, V. K. Rai, and S. Kumar. 2000.Amelioration of NaCl stress by arginine in rice seedlings: changes in endogenous polyamines. Biol. Plant 43:419-422 https://doi.org/10.1023/A:1026715032115
  14. Kavi Kishoie, P. B., Z. Mong, G.H. Miao, C. A. A. Hu, and D. S. P. Verma. 1995. Overexpresion of pyrro1ine-5-carboxy1ate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387-1394 https://doi.org/10.1104/pp.108.4.1387
  15. Keiffer, C. H., and I. A. Ungar. 1997. The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species. Am. J. Bot. 84:104-111 https://doi.org/10.2307/2445887
  16. Kim, T. W., and G. Heinrich. 1995. Stnmtium metabolism in higher plants; Effect of strontium on the polyamine biosynthesis during germination of wheat (Triticum aestivum L.). Korean J. Environ. Agric. 14:55-71
  17. Krishnamurthy, R., and K. A. Bhagwat. 1989. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 91:500-504 https://doi.org/10.1104/pp.91.2.500
  18. Kumar, A., T. Altabella, M. A. Taylor, and A. F. Tiburcio. 1997. Recent advances in polyamine research. Trends Plant Sci. 2:124-130 https://doi.org/10.1016/S1360-1385(97)01013-3
  19. Lee, S. Y., and C. S. Kim. 1995. Cellular strudural change of Barley seedling on different salt concentration under hydiopnic culture. Kor. J. Crop Sci. 40:481-486
  20. Lin, C. C., and C. H. Kao. 1996. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci. 114:121-128 https://doi.org/10.1016/0168-9452(96)04323-3
  21. Lynch, J., and A. Lauchli. 1984. Potassium tianport in salt-stressed barley roots. Planta 161:295-301 https://doi.org/10.1007/BF00398718
  22. Mansour, M. M. F., and M. M. Al-Mutawa. 1999. Stabilization of plasma membrane by polyamines against salt stress. Cytobios 100:7-17
  23. Osbome, J. M., I. E. D. Fox, and S. Mercer. 1993. Gennination response under elevated salinities of six semi-arid bluebush species (Westem Australia). p. 323-338. In H. Lieth and A. Al Masoom (ed.) Towards the rational use of high salinity plants, Vol. 1.Kluwer Academic Publishers, Dordrecht, The Netherlands
  24. Roy, M., and B. Ghosh. 1996. Polyamines, both conmon and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol. Plantarum 98:196-200 https://doi.org/10.1111/j.1399-3054.1996.tb00692.x
  25. Tabor, C. W., and H. Tabor. 1985, Polyaimines in microorganisms. Microbiol. Rev. 49:81-99
  26. Tal, M., and M. C. Shannon. 1983. Effects of dehydration and high temperature on the stability of leaf membranes of Lycopersicon esculentum, L. cheesmanii, L. peruvianwn and Solanum pennelli, Z. Pflazenphysiol. 112:411-415 https://doi.org/10.1016/S0044-328X(83)80146-9
  27. Walters, D. R., T. Cowley, and A. McPherson. 1997. Polyamine metabolism in the thermotolerant mesophilic fungus Aspergillus fumigatus.FEMS Microbiol. Lett, 153:433-437 https://doi.org/10.1111/j.1574-6968.1997.tb12607.x
  28. Williams, M. D., and I. A. Ungar. 1972. The effects of environmental parameters on the germination, growth, and development of Suaeda depressa. Am. J. Bot. 59:912-918 https://doi.org/10.2307/2441117