• Title/Summary/Keyword: Tissue engineering applications

Search Result 219, Processing Time 0.026 seconds

Cell-Interactive Polymers for Tissue Engineering

  • Lee, Kuen Yong;Mooney, David J.
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.51-57
    • /
    • 2001
  • Tissue engineering is one exciting approach to treat patients who need a new organ or tissue. A critical element in this approach is the polymer scaffold, as it provides a space for new tissue formation and mimics many roles of natural extra-cellular matrices. In this review, we describe several design parameters of polymer matrices that can significantly affect cellular behavior, as well as various polymers which are frequently used to date or potentially useful in many tissue engineering applications. Interactions between cells and polymer scaffolds, including specific receptor-ligand interactions, physical and degradation feature of the scaffolds, and delivery of soluble factors, should be considered in the design and tailoring of appropriate polymer matrices to be used in tissue engineering applications, as these interactions control the function and structure of engineered tissues.

  • PDF

Advances in the design of macroporous polymer scaffolds for potential applications in dentistry

  • Bencherif, Sidi A.;Braschler, Thomas M.;Renaud, Philippe
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.251-261
    • /
    • 2013
  • A paradigm shift is taking place in medicine and dentistry from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous three-dimensional (3D) material hydrogels integrated with cells and bioactive factors to regenerate tissues such as dental bone and other oral tissues. Hydrogels have been established as a biomaterial of choice for many years, as they offer diverse properties that make them ideal in regenerative medicine, including dental applications. Being highly biocompatible and similar to native extracellular matrix, hydrogels have emerged as ideal candidates in the design of 3D scaffolds for tissue regeneration and drug delivery applications. However, precise control over hydrogel properties, such as porosity, pore size, and pore interconnectivity, remains a challenge. Traditional techniques for creating conventional crosslinked polymers have demonstrated limited success in the formation of hydrogels with large pore size, thus limiting cellular infiltration, tissue ingrowth, vascularization, and matrix mineralization (in the case of bone) of tissue-engineered constructs. Emerging technologies have demonstrated the ability to control microarchitectural features in hydrogels such as the creation of large pore size, porosity, and pore interconnectivity, thus allowing the creation of engineered hydrogel scaffolds with a structure and function closely mimicking native tissues. In this review, we explore the various technologies available for the preparation of macroporous scaffolds and their potential applications.

Fabrication of Poly(γ-glutamic acid) Porous Scaffold for Tissue Engineering Applications (생체조직공학적 응용을 위한 폴리감마글루탐산 다공성 지지제의 제조)

  • Jeon, Hyeon Ae;Lee, Seung Wook;Kwon, Oh Hyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • Poly(g-glutamic acid) (g-PGA) is a very promising biodegradable polymer that is produced by microorganism of Bacillus subtilis. Because g-PGA is water-soluble, anionic, biodegradable, and even edible, its potential applications have been studied from an industrial standpoint. In this study, we fabricated porous g-PGA foams by means of a freeze-solvent extraction method for tissue-engineering applications. Porous g-PGA foams were chemically cross-linked using a hexamethylene diisocyanate solution. An aqueous basic solution was used to neutralize g-PGA foam for cell culturing. During an in vitro cell culture study, it was observed that primary rabbit ear chondrocytes were well at tached and spread over the surface oft hree-dimensional cross-linkedg-PGA foam. From these results, it is concluded that cross-linkedg-PGA foam is aprom is in gmaterial for tissue-engineering applications, especially those pertaining to the regeneration of human cartilage.

Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine (고분자 생체재료와 줄기세포를 이용한 조직공학과 재생의학의 최신 동향)

  • Lee, Sang Jin;Yoo, James J.;Atala, Anthony
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.113-128
    • /
    • 2014
  • Tissue engineering and regenerative medicine strategies could offer new hope for patients with serious tissue injuries or end-stage organ failure. Scientists are now applying the principles of cell transplantation, material science, and engineering to create biological substitutes that can restore and maintain normal function in diseased or injured tissues/organs. Specifically, creation of engineered tissue construct requires a polymeric biomaterial scaffold that serves as a cell carrier, which would provide structural support until native tissue forms in vivo. Even though the requirements for scaffolds may be different depending on the target applications, a general function of scaffolds that need to be fulfilled is biodegradability, biological and mechanical properties, and temporal structural integrity. The scaffold's internal architecture should also enhance the permeability of nutrients and neovascularization. In addition, the stem cell field is advancing, and new discoveries in tissue engineering and regenerative medicine will lead to new therapeutic strategies. Although use of stem cells is still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This review discusses these tissue engineering and regenerative medicine strategies for various tissues and organs.

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.

ISOLATION OF HUMAN ALVEOLAR BONE-DERIVED CELLS AND IN VITRO AMPLIFICATION FOR TISSUE ENGINEERING (조직공학용 사람 치조골세포의 인공증식)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.453-456
    • /
    • 2001
  • Background: Autogenous alveolar bone cell transplantation may be suitable for tissue engineering for alveolar bone reconstruction. This study aimed to isolate human alveolar bone-derived cells (HABDCs) and to evaluate the ability of collagen gels to support HABDC proliferation and differentiation for human alveolar bone tissue engineering applications. Method: Cultures of primary HABDCs were established from alveolar bone chips obtained from 10 persons undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vitro characterization of HABDCs and the in vitro analysis of collagen gels for alveolar bone tissue engineering. Results: Of the 10 attempts made to obtain HABDC cultures, eight were successful. HABDCs expressed the osteoblastic phenotype characterized by alkaline phosphatase activity, osteocalcin expression and the mineralization of the extracellular matrix in vitro. When seeded on collagen gels, HABDCs penetrated into the collagen gel matrices and proliferated inside the gels. Significantly, when HABDCs were embedded into the gels, collagen fibers and mineralization were produced within the gels. Conclusion: This study demonstrates the feasibility of using cultured HABDCs and collagen gels for human alveolar bone tissue engineering applications.

  • PDF

A Case Study on Precise NURBS Modeling of Human Organs (인체장기의 정밀한 NURBS 곡면 모델링 사례연구)

  • Kim H.C.;Bae Y.H.;Soe T.W.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.915-918
    • /
    • 2005
  • Advances in Information Technology and in Biomedicine have created new uses for CAD technology with many novel and important biomedical applications. Such applications can be found, for example, in the design and modeling of orthopedics, medical implants, and tissue modeling in which CAD can be used to describe the morphology, heterogeneity, and organizational structure of tissue and anatomy. CAD has also played an important role in computer-aided tissue engineering for biomimetic design, analysis, simulation and freeform fabrication of tissue scaffolds and substitutes. And all the applications require precision geometry of the organs or bones of each patient. But the geometry information currently used is polygon model with none solid geometry and is so rough that it cannot be utilized for accurate analysis, simulation and fabrication. Therefore a case study is performed to deduce a transformation method to build free form surface from a rough polygon data or medical images currently used in the application. This paper describes the transformation procedure in detail and the considerations for accurate organ modeling are discussed.

  • PDF

Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li;Yang, Shang-Tian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.311-325
    • /
    • 2001
  • Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

  • PDF