DOI QR코드

DOI QR Code

Fabrication of Poly(γ-glutamic acid) Porous Scaffold for Tissue Engineering Applications

생체조직공학적 응용을 위한 폴리감마글루탐산 다공성 지지제의 제조

  • Jeon, Hyeon Ae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Seung Wook (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kwon, Oh Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 전현애 (금오공과대학교 고분자공학과) ;
  • 이승욱 (금오공과대학교 고분자공학과) ;
  • 권오형 (금오공과대학교 고분자공학과)
  • Received : 2014.06.09
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

Poly(g-glutamic acid) (g-PGA) is a very promising biodegradable polymer that is produced by microorganism of Bacillus subtilis. Because g-PGA is water-soluble, anionic, biodegradable, and even edible, its potential applications have been studied from an industrial standpoint. In this study, we fabricated porous g-PGA foams by means of a freeze-solvent extraction method for tissue-engineering applications. Porous g-PGA foams were chemically cross-linked using a hexamethylene diisocyanate solution. An aqueous basic solution was used to neutralize g-PGA foam for cell culturing. During an in vitro cell culture study, it was observed that primary rabbit ear chondrocytes were well at tached and spread over the surface oft hree-dimensional cross-linkedg-PGA foam. From these results, it is concluded that cross-linkedg-PGA foam is aprom is in gmaterial for tissue-engineering applications, especially those pertaining to the regeneration of human cartilage.

Keywords

References

  1. Puelacher. W. C., Mooney. D., Langer. R., Upton. J., Vacanti. J. P., and Vacanti. C. A., "Design of nasoseptal cartilage replacements syntheized from biodegragable polymers and chondrocytes", Biomaterials Vol. 15 No. 10, pp. 774-778, 1994. https://doi.org/10.1016/0142-9612(94)90031-0
  2. Langer. R., and Vacanti. J. P., "Tissue engineering", Science Vol. 260, pp. 920-926, 1993. https://doi.org/10.1126/science.8493529
  3. Sakai. S., Ono. T., Ijima. H., and Kawakami. K., "Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: application to bioartificial pancreas", Biomaterials Vol. 22 No. 21, pp. 2827-2834, 2001. https://doi.org/10.1016/S0142-9612(01)00016-3
  4. de Vos. Paul., Faas. M. M., Strand. B., and Calafiore. R., "Alginate-based microcapsules for immunoisolation of pancreatic islets", Biomaterials Vol. 27 No. 32, pp. 5603-5617, 2006. https://doi.org/10.1016/j.biomaterials.2006.07.010
  5. Matthews. J. A., Wnek. G. E., Simpson. D. G., and Bowlin. G. L., "Electrospinning of collagen nanofibers", Biomacromolecules Vol. 3 No. 2, pp. 232-238, 2002. https://doi.org/10.1021/bm015533u
  6. Sun. H., Zhu. F., Hu. Q., and Krebsbach. P. H., "Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds", Biomaterials Vol. 35 No 4, pp. 1176-1184, 2014. https://doi.org/10.1016/j.biomaterials.2013.10.054
  7. Adekogbe. I., and Ghanem. A., "Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering", Biomaterials Vol. 26 No 35, pp. 7241-7250, 2005. https://doi.org/10.1016/j.biomaterials.2005.05.043
  8. Mikos. A. G., Thorsen. A. J., Czerwonka. L. A., Bao. Y., Langer. R.,, Winslow. D. N., and Vacanti. J. P., "Preparation and characterization of poly(L-lactic acid) foams", Polymer Vol. 35 No. 5, pp. 1068-1077, 1994. https://doi.org/10.1016/0032-3861(94)90953-9
  9. Kwon. O. H., Lee. I. S., Ko. Y.-G., Meng. W., Jung. K.-H., Kang. I.-K., and Ito. Y., "Electrospinning of microbial polyester for cell culture", Biomedical Materials Vol. 2, S52-58, 2007. https://doi.org/10.1088/1748-6041/2/1/S08
  10. Harris. L. D., Kim. B. S., and Mooney. D. J., "Open pore biodegradable matrices formed with gas foaming", J. Biomed. Mater. Res., Vol. 42 No. 3, pp. 396-402, 1998. https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  11. Bose. S., Vahabzade. S., and Bandyopadhyay. A., "Bone tissue engineering using 3D printing", Materials Today Vol. 16 No. 12, pp. 496-504, 2013. https://doi.org/10.1016/j.mattod.2013.11.017
  12. Ko. Y.-G., Yoon. K. H., Park. C, Sung. M.-H., Kwon. O. K., Ahn. C. H., Kim. Y.-J., and Kwon. O. H., "Preparation and evaluation of poly(g-glutamic acid)-based anti-adhesion membranes", Key Eng. Mat., Vol. 342-343, pp. 225-228, 2007. https://doi.org/10.4028/www.scientific.net/KEM.342-343.225
  13. Sung. M.-H., Park. C., Kim. C.-J., Poo. H., Soda. K., and Ashiuchi. Makoto., "Natural and edible biopolymer poly-g-glutamic acid: Synthesis, production and its applications". The Chemical Record Vol. 5, pp. 352-366, 2005. https://doi.org/10.1002/tcr.20061
  14. Choi. H. J., Yang. R., and Kunioka. M., "Synthesis and characterization of pH-sensitive and biodegradable hydrogels prepared by g-irradiation using microbial poly(g-glutamic acid) and poly(${\varepsilon}$-lysine)", J. Appl. Polym. Sci., Vol. 58 No. 4, pp. 807-814, 1995. https://doi.org/10.1002/app.1995.070580414