DOI QR코드

DOI QR Code

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil (Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University) ;
  • Kamalvand, Mahshad (Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University) ;
  • Keshel, Saeed Heidari (Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences) ;
  • Pourjabbar, Bahareh (Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences) ;
  • Rezaei-Tavirani, Mustafa (Proteomics Research Center, Shahid Beheshti University of Medical Sciences)
  • Received : 2021.09.27
  • Accepted : 2022.03.22
  • Published : 2022.04.27

Abstract

Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Keywords

References

  1. E. A. A. Neel, L. Bozec, J. C. Knowles, O. Syed, V. Mudera, R. Day and J. K. Hyun, Adv. Drug Delivery Rev., 65, 429 (2013). https://doi.org/10.1016/j.addr.2012.08.010
  2. A. Bailey, S. Robins and G. Balian, Nature, 251, 105 (1974). https://doi.org/10.1038/251105a0
  3. J. S. Lee, J. K. Kim, Y. H. Chang and S. R. Park, Macromol. Res., 15, 205 (2007). https://doi.org/10.1007/BF03218776
  4. Y. Jie, Z. Cai, S. Li, Z. Xie, M. Ma and X. Huang, Macromol. Res., 25, 905 (2017). https://doi.org/10.1007/s13233-017-5091-z
  5. J. E. Song, N. Tripathy, J. H. Shin, D. H. Lee, J. G. Cha and C. H. Park, Macromol. Res., 25, 994 (2017). https://doi.org/10.1007/s13233-017-5134-5
  6. J. E. Song, N. Tripathy, J. H. Shin, D. H. Lee, C. H. Park and G. Khang, Macromol. Res., 24, 359 (2016). https://doi.org/10.1007/s13233-016-4051-3
  7. Z. Zhai, H. Wang, B. Wei, P. Yu, C. Xu and L. He, Macromol. Res., 26, 609 (2018). https://doi.org/10.1007/s13233-018-6081-5
  8. L. He, W. Lan, Y. Wang, S. Ahmed and Y. Liu, Foods, 8, 396 (2019). https://doi.org/10.3390/foods8090396
  9. L. A. Tziveleka, E. Ioannou, D. Tsiourvas, P. Berillis, E. Foufa and V. Roussis, Mar. Drugs, 15, 152 (2017). https://doi.org/10.3390/md15060152
  10. T. Purohit, T. He, Z. Qin, T. Li, G. J. Fisher and Y. Yan, J. Dermatol. Sci., 83, 80 (2016). https://doi.org/10.1016/j.jdermsci.2016.04.004
  11. Y. S. Lim, Y. J. Ok, S. Y. Hwang, J. Y. Kwak and S. Yoon, Mar. Drugs, 17, 467 (2019). https://doi.org/10.3390/md17080467
  12. S. Shin, M. Ikram, F. Subhan, H. Y. Kang, Y. Lim and R. Lee, RSC Adv., 6, 46952 (2016). https://doi.org/10.1039/c6ra01937d
  13. S. K. Ghosh and D. Mandal, Appl. Phys. Lett., 109, 103701 (2016). https://doi.org/10.1063/1.4961623
  14. P. Vares, M. M. Dehghan, F. Bastami, E. Biazar, N. Shamloo and S. H. Keshel and A. Khojasteh, J. Craniofac. Surg., 32, 794 (2020).
  15. S. Akhshabi, E. Biazar, V. Singh, S. H. Keshel and N. Geetha, Int. J. Nanomedicine, 13, 4405 (2018). https://doi.org/10.2147/IJN.S165739
  16. S. Heidari-Keshel, M. Ahmadian, E. Biazar, A. Gazmeh, M. Rabiei and M. Adibi, Mater. Tech., 31, 799 (2016). https://doi.org/10.1080/10667857.2016.1258517
  17. S. Akhshabi, E. Biazar, V. Singh, S. H. Keshel, S. Heidari-Keshel and G. Nagaraja, Mater. Tech., 33, 253 (2018). https://doi.org/10.1080/10667857.2017.1410998
  18. J. Ai, K. S. Heidari, F. Ghorbani, F. Ejazi, E. Biazar and A. Asefnejad, J. Nanomaterials, 2011, 123724 (2011).
  19. S. H. Keshel, E. Biazar, M. R. Tavirani, M. R. Roodsari, A. Ronaghi and M. Ebrahimi, Artif. Cells. Nanomed. Biotechnol., 42, 210 (2013).
  20. E. Biazar, S. H. Keshel and M. Pouya, Neural Regen. Res., 8, 2501 (2013).
  21. Y. Liu, D. Ma, Y. Wang and W. Qin, Int. J. Biol. Macromol., 106, 516 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.044
  22. J. Hu, T. Li, X. Liu and D. Liu, Food Biosci., 15, 27 (2016). https://doi.org/10.1016/j.fbio.2016.04.006
  23. M. V. Bhuimbar, P. K. Bhagwat and P. B. Dandge, J. Environ. Chem. Eng., 7, 102983 (2019). https://doi.org/10.1016/j.jece.2019.102983
  24. W. Jimin, Y. Ping and G. Jing, Acad. Military Med. Sci., 22, 281 (1998).
  25. B. Pourjabbar, L. Hassani and H. R. Sajedi, Protein Pept. Lett., 22, 1089 (2015). https://doi.org/10.2174/0929866522666150929103520
  26. L. Tang, S. Chen, W. Su, W. Weng, K. Osako and M. Tanaka, Process Biochem., 50, 148 (2015). https://doi.org/10.1016/j.procbio.2014.10.015
  27. M. Koulikovska, M. Rafat, G. Petrovski, Z. Vereb, S. Akhtar and P. Fagerholm, Tissue Eng., 21, 1116 (2015). https://doi.org/10.1089/ten.tea.2014.0562
  28. Y. Jia, H. Wang, H. Wang, Y. Li, M. Wang and J. Zhou, Food Sci. Biotechnol., 21, 1585 (2012). https://doi.org/10.1007/s10068-012-0211-1
  29. M. Kamalvand, E. Biazar, M. Daliri-Joupari, F. Montazer, M. Rezaei-Tavirani and S. Heidari-Keshel, Tissue Cell, 71, 101509 (2021). https://doi.org/10.1016/j.tice.2021.101509
  30. C. S. Lau, A. Hassanbhai, F. Wen, D. Wang, N. Chanchareonsook and B. T. Goh, J. Tissue Eng. Regener. Med., 13, 1779 (2019). https://doi.org/10.1002/term.2928
  31. Y. Chen, R. Ye and Y. Wang, Int. J. Food Sci. Technol., 50, 186 (2015). https://doi.org/10.1111/ijfs.12675
  32. M. Yan, B. Li, X. Zhao, G. Ren, Y. Zhuang and H. Hou, Food Chem., 107, 1581 (2008). https://doi.org/10.1016/j.foodchem.2007.10.027
  33. D. Liu, P. Zhou, T. Li and J. M. Regenstein, Food Hydrocolloids, 41, 290 (2014). https://doi.org/10.1016/j.foodhyd.2014.04.030
  34. J. Chen, L. Li, R. Yi, N. Xu, R. Gao and B. Hong, LWT-Food Sci. Technol., 66, 453 (2016). https://doi.org/10.1016/j.lwt.2015.10.070
  35. P. Kittiphattanabawon, S. Nalinanon, S. Benjakul and H. Kishimura, J. Chem., 2015, 1 (2015).
  36. S. Krimm and J. Bandekar, Adv. Protein Chem., 38, 181 (1986). https://doi.org/10.1016/S0065-3233(08)60528-8
  37. Q. Li, L. Mu, F. Zhang, Y. Sun, Q. Chen and C. Xie, Mater. Sci. Eng. C, 80, 346 (2017). https://doi.org/10.1016/j.msec.2017.05.102
  38. M. Griffith, R. Osborne, R. Munger, X. Xiong, C. J. Doillon and N. L. Laycock, Science, 286, 2169 (1999). https://doi.org/10.1126/science.286.5447.2169
  39. S. Shimmura, C. J. Doillon, M. Griffith, M. Nakamura, E. Gagnon and A. Usui, Cornea, 22, S81 (2003). https://doi.org/10.1097/00003226-200310001-00012
  40. C. K. Bektas and V. Hasirci, J. Tissue Eng. Regener. Med., 12, e1899 (2018). https://doi.org/10.1002/term.2621