• Title/Summary/Keyword: Tissue Composition

Search Result 424, Processing Time 0.023 seconds

A Number of Bone Marrow Mesenchymal Stem Cells but Neither Phenotype Nor Differentiation Capacities Changes with Age of Rats

  • Tokalov, Sergey V.;Gruner, Susanne;Schindler, Sebastian;Iagunov, Alexey S.;Baumann, Michael;Abolmaali, Nasreddin D.
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.255-260
    • /
    • 2007
  • Bone marrow (BM) derived mesenchymal stem cells (MSC) are pluripotent cells which can differentiate into osteogenic, adipogenic and other lineages. In spite of the broad interest, the information about the changes in BM cell composition, in particularly about the variation of MSC number and their properties in relation to the age of the donor is still controversial. The aim of this study was to investigate the age associated changes in variations of BM cell composition, phenotype and differentiation capacities of MSC using a rat model. Cell populations were characterized by flow cytometry using light scattering parameters, DNA content and a set of monoclonal antibodies. Single cell analysis was performed by conventional fluorescent microscopy. In vitro culture of MSC was established and their phenotype and capability for in vitro differentiation into osteogenic and adipogenic cells was shown. Age related changes in tibiae and femurs, amount of BM tissue, BM cell composition, proportions of separated MSC and yield of MSC in 2 weeks of in vitro culture were found. At the same time, neither change in phenotype no in differentiation capacities of MSC was registered. Age-related changes of the number of MSC should be taken into account whenever MSC are intended to be used for investigations.

Effect of Different Dietary Composition of Linoleic Acid, Eicosapentaenoic Acid and Docosahexaenoic Acid on the Growth and Fatty Acid Profile of Olive Flounder Paralichthys olivaceus (Linoleic acid, EPA 및 DHA 조성이 다른 배합사료 공급에 따른 넙치 (Paralichthys olivaceus)의 성장 및 어체 지방산 조성)

  • Kim, Esther;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • This study was conducted to investigate the effects of different dietary lipid sources on the growth, feed utilization, body composition and tissue fatty acid profile of olive flounder Paralichthys olivaceus. Five isonitrogenous and isocaloric diets were formulated by adding various lipid sources including soybean oil (SO), eicosapentaenoic acid triglyceride (EPATG) and ethyl ester (EPAEE) forms, docosahexaenoic acid triglycerides (DHATG) and a 1:1 blend of soybean oil and DHATG. Triplicate groups of fish ($6.8{\pm}0.01g$) were fed one of the experimental diets to apparent satiation twice daily for 8 weeks. Fish fed the DHATG diet had the highest growth, protein efficiency ratio and feed efficiency values which were significantly higher than those fed the SO and EPAEE diets. Whole body proximate composition and somatic parameters were not influenced by the dietary treatments. Muscle of fish fed with SO diets were rich in 18:1n-9, 18:2n-6 and 18:3n-3, whereas those of fish fed with EPATG, EPAEE and DHATG diets were rich in n-3 highly unsaturated fatty acids (HUFA). These findings indicated that the inclusion of n-3HUFA oils in olive flounder feed could be beneficial for the fish while simultaneously increasing the concentration of beneficial n-3HUFA in fish fillets destined for the human consumer.

Structural Alterations in the Gill of the Red Sea Bream, Pagrus major, Exposed to the Harmful Dinoflagellate Cochlodinium polykrikoides

  • Kim Chang Sook;Jee Bo-Young;Bae Heon Meen
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • The effects of Coehlodinium polykrikoides on the gill of red sea bream, Pagrus major, were examined to clarify the ichthyotoxic mechanisms of this plankton species. The gill of fish exposed to dense blooms over 3,000 cells/mL for 24 h showed severe epithelial separation: a severe edema was found in the secondary lamellar epithelium and interlamellar regions of primary filament. In addition, lipid peroxidation of gill tissue in Coehlodinium-exposed fish was about 2.5 times higher than that of control. The composition of glycoproteins in the gill mucus of Coehlodinium-exposed fish was also changed. These results suggest that the loss of structural integrity of cell membranes in fish gill may be deeply involved in fish death by C. polykrikoides.

The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate

  • Goncalves, Joao;Pelletier, Laurence
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.243-253
    • /
    • 2017
  • Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.

Cloning, Expression, and Renaturation Studies of Reteplase

  • Zhao, Youchun;Ge, Wang;Kong, Young;Zhang, Changkai
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.989-992
    • /
    • 2003
  • Recombinant human tissue plasminogen activator deletion mutein (Reteplase) is a clinically promising thrombolytic drug. Reteplase cDNA was subcloned into a bacteria expression system, and the resultant recombinant was biologically characterized. The Reteplase was expressed in Escherichia coli as an inclusion body, and the downstream processes of the Reteplase inclusion body included denaturation, renaturation, and purification. A protein disulfide isomerase (PDI) was used to assist the refolding of Reteplase, and it was found to increase the refolding rate from less than 2% to more than 20%. The refolded Reteplase was purified through two chromatography steps, including lysine-coupled agarose affinity chromatography and then CM-sepharose cation-exchange chomatography. The purity of r-PA was analyzed by Western bolt analysis, and N-terminal amino acid and amino acid composition analyses confirmed the end-product. Reteplase showed higher thrombolytic potency in an animal thrombus model.

The Relationship among Flesh Browning, Membrane Permeability, and Fatty Acid Composition in Fuyu Persimmon Fruits (단감 과실의 과육 갈변과 세포막 투과성 및 지방산 조성 변화의 관계)

  • 최성진
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • The cell membrane properties in relation to flesh browning of Fuyu persimmon fruits during CA storage were studied. Compared to intact fruits, the flesh tissue of browned fruits showed higher rate of electrolyte leakage, indicating incresed membrane permeability. It could be assumed that the increased membrane permeability results in 1eakage of phenolic compounds from vacuole and their oxidation by contacting with PPO, inducing finally the development of flesh browning. In addition, lower content of fatty acids and higher saturation rate of them were found in browned fruits. In conculusion, it was suggested that the inhibited fatty acid metabolism and fatty acid saturation during CA storage cause membrane Permeability to increase.

  • PDF

Human intronless disease associated genes are slowly evolving

  • Agarwal, Subhash Mohan;Srivastava, Prashant K.
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.356-360
    • /
    • 2009
  • In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower $K_{a}$ and $K_{a}/K_{s}$ while $K_{s}$ although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Nutritional Support Strategies for the Preterm Infant in the Neonatal Intensive Care Unit

  • Hay, William W. Jr.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.21 no.4
    • /
    • pp.234-247
    • /
    • 2018
  • The goal of nutrition of the preterm infant is to "provide nutrients to approximate the rate of growth and composition of weight gain for a normal fetus of the same postmenstrual age and to maintain normal concentrations of blood and tissue nutrients" (American Academy of Pediatrics 2014). Failure to provide the necessary amounts of all of the essential nutrients to preterm infants has produced not only growth failure, but also increased morbidity and less than optimal neurodevelopment. This continues to be true despite many efforts to increase nutrition of the preterm infants. In contrast, enhanced nutrition of very preterm infants, both intravenous and enteral, beginning right after birth, promotes positive energy and protein balance and improves longer term neurodevelopmental outcomes. The benefits are long lasting too, particularly for prevention of later life chronic diseases.

Bark Morphology of Some Korean Gymnosperms (수종 한국산 나자식물 수피의 형태학적 연구)

  • 김경식
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.339-358
    • /
    • 1992
  • The bark morphology and anatomy of six species in Korean gymnosperms were examined with light and scanning electron microscopes. The species were Thuja orientalis (Cupressaceae), Ginkgo biloba (Ginkgoaceae), Cyeas revoluta (Cycadaceae), Pinus koraiensis (pinaceae), Taxus cuspidata (Taxaceae), Cryptomeria japoniea (Taxodiaceae). We described the bark features such as surface colour, thickness, depth of inner and outer bark. presense or absence and features of expansion tissue of ray, composition of periderm, and component cells of secondary phloem. The comparison with these features showed significant differences among all six species. Furthermore. it was suggested that sclereids types and sieve area shapes in sieve cells might be useful to the comparative morphological studies of gymnosperms.sperms.

  • PDF

Effects of Gut Extract Protein and Insulin on Glucose Uptake and GLUT 1 Expression in HC 11 Mouse Mammary Epithelial Cells

  • Myung, K.H.;Ahn, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1210-1214
    • /
    • 2002
  • The large and rapid changes of glucose utilization in lactating mammary tissue in response to changes in nutritional state must be largely related by external signal of insulin. This also must be related with the quantity and composition of the diet in vivo. To characterize the mode of gut extract protein with insulin, in vitro experiment was conducted with HC11 cells. The gut extract protein has not only the same effect as insulin alone but also the synergistic effect with insulin in 2-Deoxy[3H] glucose uptake. Although the gut extract did not modulates glucose uptake via increasing the rate of translation of the GLUT1 protein, northern blot analysis indicated that the gut extract protein increased the expression of GLUT1 mRNA by a threefold and also there was a dose-dependent increase in the expression of GLUT1 mRNA. The gut extract protein is therefore shown to be capable of modulating glucose uptake by transcription level with insulin in HC 11 cells.