DOI QR코드

DOI QR Code

The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate

  • Received : 2017.04.03
  • Accepted : 2017.04.05
  • Published : 2017.04.30

Abstract

Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.

Keywords

References

  1. Abdelhamed, Z.A., Natarajan, S., Wheway, G., Inglehearn, C.F., Toomes, C., Johnson, C.A., and Jagger, D.J. (2015). The Meckel- Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the noncanonical Wnt pathway. Dis. Model. Mech. 8, 527-541. https://doi.org/10.1242/dmm.019083
  2. Arts, H.H., Doherty, D., van Beersum, S.E., Parisi, M.A., Letteboer, S.J., Gorden, N.T., Peters, T.A., Märker, T., Voesenek, K., Kartono, A., et al. (2007). Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 39, 882-888. https://doi.org/10.1038/ng2069
  3. Awata, J., Takada, S., Standley, C., Lechtreck, K.F., Bellvé, K.D., Pazour, G.J., Fogarty, K.E., and Witman, G.B. (2014). NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714-4727. https://doi.org/10.1242/jcs.155275
  4. Bachmann-Gagescu, R., Phelps, I.G., Stearns, G., Link, B.A., Brockerhoff, S.E., Moens, C.B., and Doherty, D. (2011). The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum. Mol. Genet. 20, 4041-4055. https://doi.org/10.1093/hmg/ddr332
  5. Bachmann-Gagescu, R., Dona, M., Hetterschijt, L., Tonnaer, E., Peters, T., de Vrieze, E., Mans, D.A., van Beersum, S.E., Phelps, I.G., Arts, H.H., et al. (2015). The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 11, e1005575. https://doi.org/10.1371/journal.pgen.1005575
  6. Barbelanne, M., Hossain, D., Chan, D.P., Peränen, J., and Tsang, W.Y. (2015). Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum. Mol. Genet. 24, 2185-2200. https://doi.org/10.1093/hmg/ddu738
  7. Boldt, K., Mans, D.A., Won, J., van Reeuwijk, J., Vogt, A., Kinkl, N., Letteboer, S.J., Hicks, W.L., Hurd, R.E., Naggert, J.K., et al. (2011). Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J. Clin. Invest. 121, 2169-2180. https://doi.org/10.1172/JCI45627
  8. Chavez, M., Ena, S., Van Sande, J., de Kerchove d'Exaerde, A., Schurmans, S., and Schiffmann, S.N. (2015). Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output. Dev. Cell. 34, 338-350. https://doi.org/10.1016/j.devcel.2015.06.016
  9. Chih, B., Liu, P., Chinn, Y., Chalouni, C., Komuves, L.G., Hass, P.E., Sandoval, W., and Peterson, A.S. (2011). A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell. Biol. 14, 61-72. https://doi.org/10.1038/ncb2410
  10. Christopher, K.J., Wang, B., Kong, Y., and Weatherbee, S.D. (2012). Forward genetics uncovers transmembrane protein 107 as a novel factor required for ciliogenesis and sonic hedgehog signaling. Dev. Biol. 368, 382-392. https://doi.org/10.1016/j.ydbio.2012.06.008
  11. Craige, B., Tsao, C.C., Diener, D.R., Hou, Y., Lechtreck, K.F., Rosenbaum, J.L., and Witman, G.B. (2010). CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927-940. https://doi.org/10.1083/jcb.201006105
  12. Cui, C., Chatterjee, B., Francis, D., Yu, Q., SanAgustin, J.T., Francis, R., Tansey, T., Henry, C., Wang, B., Lemley, B., et al. (2011). Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis. Model. Mech. 4, 43-56. https://doi.org/10.1242/dmm.006262
  13. Damerla, R.R., Cui, C., Gabriel, G.C., Liu, X., Craige, B., Gibbs, B.C., Francis, R., Li, Y., Chatterjee, B., San Agustin, J.T., et al. (2015). Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies. Hum. Mol. Genet. 24, 3994-4005. https://doi.org/10.1093/hmg/ddv137
  14. Dawe, H.R., Smith, U.M., Cullinane, A.R., Gerrelli, D., Cox, P., Badano, J.L, Blair-Reid, S., Sriram, N., Katsanis, N., Attie-Bitach, T., et al. (2007). The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum. Mol. Genet. 16, 173-186. https://doi.org/10.1093/hmg/ddl459
  15. Dean, S., Moreira-Leite, F., Varga, V., and Gull, K. (2016). Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc. Natl. Acad. Sci. USA 113, E5135-5143. https://doi.org/10.1073/pnas.1604258113
  16. Delous, M, Baala, L., Salomon, R., Laclef, C., Vierkotten, J., Tory, K., Golzio, C., Lacoste, T., Besse, L., Ozilou, C., et al. (2007). The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875-881. https://doi.org/10.1038/ng2039
  17. Delous, M., Hellman, N.E., Gaudé, H.M., Silbermann, F., Le Bivic, A., Salomon, R., Antignac, C., and Saunier, S. (2009). Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18, 4711-4723. https://doi.org/10.1093/hmg/ddp434
  18. den Hollander, A.I., Koenekoop, R.K., Mohamed, M.D., Art,s H.H., Boldt, K., Towns, K.V., Sedmak, T., Beer, M., Nagel-Wolfrum, K., McKibbin, M., et al. (2007). Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat. Genet. 39, 889-895. https://doi.org/10.1038/ng2066
  19. Diener, D.R., Lupetti, P., and Rosenbaum, J.L. (2015). Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr. Biol. 25, 379-384. https://doi.org/10.1016/j.cub.2014.11.066
  20. Dowdle, W.E., Robinson, J.F., Kneist, A., Sirerol-Piquer, M.S., Frints, S.G., Corbit, K.C., Zaghloul, N.A., van Lijnschoten, G., Mulders, L., Verver, D.E., et al. (2011). Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89, 94-110. https://doi.org/10.1016/j.ajhg.2011.06.003
  21. Dyson, J.M., Conduit, S.E., Feeney, S.J., Hakim, S., Di Tommaso, T., Fulcher, A.J., Sriratana, A., Ramm, G., Horan, K.A., Gurung, R., et al. (2016). INPP5E regulates phosphoinositide-dependent cilia transition zone function. J. Cell Biol. 216, 247-263.
  22. Emmer, B.T., Maric, D., and Engman, D.M. (2010). Molecular mechanisms of protein and lipid targeting to ciliary membranes. J. Cell Sci. 123, 529-536. https://doi.org/10.1242/jcs.062968
  23. Enjolras, C., Thomas, J., Chhin, B., Cortier, E., Duteyrat, J.L., Soulavie, F., Kernan, M.J., Laurençon, A., and Durand, B. (2012). Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J. Cell Biol. 197, 313-325. https://doi.org/10.1083/jcb.201109148
  24. Garcia-Gonzalo, F.R., Corbit, K.C., Sirerol-Piquer, M.S., Ramaswami, G., Otto, E.A., Noriega, T.R., Seol, A.D., Robinson, J.F., Bennett, C.L., Josifova, D.J., et al. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776-784. https://doi.org/10.1038/ng.891
  25. Garcia-Gonzalo, F.R., Phua, S.C., Roberson, E.C., Garcia, G. 3rd., Abedin, M., Schurmans, S., Inoue, T., and Reiter, J.F. (2015). Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev Cell. 34, 400-409. https://doi.org/10.1016/j.devcel.2015.08.001
  26. Gakovic, M., Shu, X., Kasioulis, I., Carpanini, S., Moraga, I., and Wright, A.F. (2011). The role of RPGR in cilia formation and actin stability. Hum. Mol. Genet. 20, 4840-4850. https://doi.org/10.1093/hmg/ddr423
  27. Gerner, M., Haribaskar, R., Putz, M., Czerwitzki, J., Walz, G., and Schafer, T. (2010). The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) links RPGR to the nephronophthisis protein network. Kidney Int. 77, 891-896. https://doi.org/10.1038/ki.2010.27
  28. Goetz, S.C., Bangs, F., Barrington, C.L., Katsanis, N., and Anderson, K.V. (2017). The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 12, e0173399. https://doi.org/10.1371/journal.pone.0173399
  29. Gorden, N.T., Arts, H.H., Parisi, M.A., Coene, K.L., Letteboer, S.J., van Beersum, S.E., Mans, D.A., Hikida, A., Eckert, M., Knutzen, D., et al. (2008). CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am. J. Hum. Genet. 83, 559-571. https://doi.org/10.1016/j.ajhg.2008.10.002
  30. Gupta, G.D., Coyaud, E., Goncalves, J., Mojarad, B.A., Liu, Y., Wu, Q., Gheiratmand, L., Comartin, D., Tkach, J.M., Cheung, S.W., et al. (2015). A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163, 1484-1499. https://doi.org/10.1016/j.cell.2015.10.065
  31. Hong, D.H., Pawlyk, B.S., Shang, J., Sandberg, M.A., Berson, E.L., and Li, T. (2000). A retinitis pigmentosa GTPase regulator (RPGR)- deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc. Natl. Acad. Sci. USA 97, 3649-3654. https://doi.org/10.1073/pnas.97.7.3649
  32. Hong, D.H., Yue, G., Adamian, M., and Li, T. (2001). Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J. Biol. Chem. 276, 12091-12099. https://doi.org/10.1074/jbc.M009351200
  33. Hsiao, Y.C., Tong, Z.J., Westfall, J.E., Ault, J.G., Page-McCaw, P.S., and Ferland, R.J. (2009). Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum. Mol. Genet. 18, 3926-3941. https://doi.org/10.1093/hmg/ddp335
  34. Huang, L., Szymanska, K., Jensen, V.L., Janecke, A.R., Innes, A.M., Davis, E.E., Frosk, P., Li, C., Willer, J.R., Chodirker, B.N., et al. (2011). TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 89, 713-730. https://doi.org/10.1016/j.ajhg.2011.11.005
  35. Ishikawa, H., and Marshall, W.F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect Biol. 9, pii: a021998. https://doi.org/10.1101/cshperspect.a021998
  36. Jensen, V.L., Li, C., Bowie, R.V., Clarke, L., Mohan, S., Blacque, O.E., and Leroux, M.R. (2015). Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537-56. https://doi.org/10.15252/embj.201488044
  37. Jin, H., White, S.R., Shida, T., Schulz, S., Aguiar, M., Gygi, S.P., Bazan, J.F., and Nachury, M.V. (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208-1219. https://doi.org/10.1016/j.cell.2010.05.015
  38. Khanna, H., Hurd, T.W., Lillo, C., Shu, X., Parapuram, S.K., He, S., Akimoto, M., Wright, A.F., Margolis, B., Williams, D.S., et al. (2005). RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J. Biol. Chem. 280, 33580-33587. https://doi.org/10.1074/jbc.M505827200
  39. Kim, J., Krishnaswami, S.R., and Gleeson, J.G. (2008). CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796-3805. https://doi.org/10.1093/hmg/ddn277
  40. Klinger, M., Wang, W., Kuhns, S., Barenz, F., Drager-Meurer, S., Pereira, G., and Gruss, O.J. (2014). The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol. Biol. Cell. 25, 495-507. https://doi.org/10.1091/mbc.E13-09-0526
  41. Lambacher, N.J., Bruel, A.L., van Dam, T.J., Szymanska, K., Slaats, G.G., Kuhns, S., McManus, G.J., Kennedy, J.E., Gaff, K., Wu, K.M., et al. (2016). TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122-131. https://doi.org/10.1038/ncb3273
  42. Lessieur, E.M., Fogerty, J., Gaivin, R.J., Song, P., and Perkins, B.D. (2017). The ciliopathy gene ahi1 is required for zebrafish cone photoreceptor outer segment morphogenesis and survival. Invest. Ophthalmol. Vis. Sci. 58, 448-460. https://doi.org/10.1167/iovs.16-20326
  43. Li, C., Jensen, V.L., Park, K., Kennedy, J., Garcia-Gonzalo, F.R., Romani, M., De Mori, R., Bruel, A.L., Gaillard, D., Doray, B., et al. (2016). MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol. 14, e1002416. https://doi.org/10.1371/journal.pbio.1002416
  44. Lee, J.H., Silhavy, J.L., Lee, J.E., Al-Gazali, L., Thomas, S., Davis, E.E., Bielas, S.L., Hill, K.J., Iannicelli, M., Brancati, F., et al. (2012). Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science 335, 966-999. https://doi.org/10.1126/science.1213506
  45. Long, H., Zhang, F., Xu, N., Liu, G., Diener, D.R., Rosenbaum, J.L., and Huang, K. (2016). Comparative analysis of ciliary membranes and ectosomes. Curr. Biol. 26, 3327-3335. https://doi.org/10.1016/j.cub.2016.09.055
  46. Louie, C.M., Caridi, G., Lopes, V.S., Brancati, F., Kispert, A., Lancaster, M.A., Schlossman, A.M., Otto, E.A., Leitges, M., Gröne, H.J., et al. (2010). AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 42, 175-180. https://doi.org/10.1038/ng.519
  47. Ma, L., and Jarman, A.P. (2011). Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. J. Cell Sci. 124, 2622-2630. https://doi.org/10.1242/jcs.084798
  48. Mahuzier, A., Gaude, H.M., Grampa, V., Anselme, I., Silbermann, F., Leroux-Berger, M., Delacour, D., Ezan, J., Montcouquiol, M., Saunier, S., et al. (2012). Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity. J. Cell Biol. 198, 927-940. https://doi.org/10.1083/jcb.201111009
  49. Mitchison, H.M., and Valente, E.M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241, 294-309. https://doi.org/10.1002/path.4843
  50. Mollet, G., Silbermann, F., Delous, M., Salomon, R., Antignac, C., and Saunier, S. (2005). Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum. Mol. Genet. 14, 645-656.
  51. Otto, E.A., Loeys, B., Khanna, H., Hellemans, J., Sudbrak, R., Fan, S., Muerb, U., O'Toole, J.F., Helou, J., Attanasio, M., et al. (2005). Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior- Loken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 37, 282-288. https://doi.org/10.1038/ng1520
  52. Park, J., Lee, N., Kavoussi, A., Seo, J.T., Kim, C.H., and Moon, S.J. (2015). Ciliary Phosphoinositide Regulates Ciliary Protein Trafficking in Drosophila. Cell Rep. 13, 2808-2816. https://doi.org/10.1016/j.celrep.2015.12.009
  53. Patil, H., Tserentsoodol, N., Saha, A., Hao, Y., Webb, M., and Ferreira, P.A. (2012). Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons. Cell Death Dis. 3, e355. https://doi.org/10.1038/cddis.2012.96
  54. Pratt, M.B, Titlow, J.S., Davis, I., Barker, A.R., Dawe, H.R., Raff, J.W., and Roque, H. (2016). Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J. Cell Sci. 129, 3732-3743. https://doi.org/10.1242/jcs.194621
  55. Rachel, R.A., Yamamoto, E.A., Dewanjee, M.K., May-Simera, H.L., Sergeev, Y.V., Hackett, A.N., Pohida, K., Munasinghe, J., Gotoh, N., Wickstead, B., et al. (2015). CEP290 alleles in mice disrupt tissuespecific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum. Mol. Genet. 24, 3775-3791. https://doi.org/10.1093/hmg/ddv123
  56. Rao, K.N., Zhang, W., Li, L., Ronquillo, C., Baehr, W., and Khanna, H. (2016). Ciliopathy-associated protein CEP290 modifies the severity of retinal degeneration due to loss of RPGR. Hum. Mol. Genet. 25, 2005-2012. https://doi.org/10.1093/hmg/ddw075
  57. Reiter, J.F., Blacque, O.E., and Leroux, M.R. (2012). The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608-618. https://doi.org/10.1038/embor.2012.73
  58. Roberson, E.C., Dowdle, W.E., Ozanturk, A., Garcia-Gonzalo, F.R., Li, C., Halbritter, J., Elkhartoufi, N., Porath, J.D., Cope, H., Ashley-Koch, A., et al. (2015). TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 209, 129-142. https://doi.org/10.1083/jcb.201411087
  59. Ronquillo, C.C., Hanke-Gogokhia, C., Revelo, M.P., Frederick, J.M., Jiang, L., and Baehr, W. (2016). Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB J. 30, 3400-3412. https://doi.org/10.1096/fj.201600511R
  60. Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801-810. https://doi.org/10.1083/jcb.201112098
  61. Sang, L., Miller, J.J., Corbit, K.C., Giles, R.H., Brauer, M.J., Otto, E.A., Baye, L.M., Wen, X., Scales, S.J., Kwong, M., et al. (2011). Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513-528. https://doi.org/10.1016/j.cell.2011.04.019
  62. Sayer, J.A., Otto, E.A., O'Toole, J.F., Nurnberg, G., Kennedy, M.A., Becker, C., Hennies, H.C., Helou, J., Attanasio, M., Fausett, B.V., et al. (2006). The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674-681. https://doi.org/10.1038/ng1786
  63. Schafer, T., Putz, M., Lienkamp, S., Ganner, A., Bergbreiter, A., Ramachandran, H., Gieloff, V., Gerner, M., Mattonet, C., Czarnecki, P.G., et al. (2008). Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum. Mol. Genet. 17, 3655-3662. https://doi.org/10.1093/hmg/ddn260
  64. Schouteden, C., Serwas, D., Palfy, M., and Dammermann, A. (2015). The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J. Cell Biol. 210, 35-44. https://doi.org/10.1083/jcb.201501013
  65. Shaheen, R., Almoisheer, A., Faqeih, E., Babay, Z., Monies, D., Tassan, N., Abouelhoda, M., Kurdi, W., Al Mardawi, E., Khalil, M.M., et al. (2015). Identification of a novel MKS locus defined by TMEM107 mutation. Hum. Mol. Genet. 24, 5211-5218. https://doi.org/10.1093/hmg/ddv242
  66. Shu, X., Fry, A.M., Tulloch, B., Manson, F.D., Crabb, J.W., Khanna, H., Faragher, A.J., Lennon, A., He, S., Trojan, P., et al. (2005). RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum. Mol. Genet. 14, 1183-1197. https://doi.org/10.1093/hmg/ddi129
  67. Shylo, N.A., Christopher, K.J., Iglesias, A., Daluiski, A., and Weatherbee, S.D. (2016). TMEM107 is a critical regulator of ciliary protein composition and is mutated in Orofaciodigital syndrome. Hum. Mutat. 37, 155-159. https://doi.org/10.1002/humu.22925
  68. Slaats, G.G., Isabella, C.R., Kroes, H.Y., Dempsey, J.C., Gremmels, H., Monroe, G.R., Phelps, I.G., Duran, K.J., Adkins, J., Kumar, S.A., et al. (2016). MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J. Med. Genet. 53, 62-72. https://doi.org/10.1136/jmedgenet-2015-103250
  69. Slanchev, K., Pütz, M., Schmitt, A., Kramer-Zucker, A., and Walz, G. (2011). Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum. Mol. Genet. 20, 3119-3128. https://doi.org/10.1093/hmg/ddr214
  70. Thomas, S., Legendre, M., Saunier, S., Bessières, B., Alby, C., Bonnière, M., Toutain, A., Loeuillet, L., Szymanska, K., Jossic, F., et al. (2012). TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet. 91, 372-378. https://doi.org/10.1016/j.ajhg.2012.06.017
  71. Valente, E.M., Logan, C.V., Mougou-Zerelli, S., Lee, J.H., Silhavy, J.L., Brancati, F., Iannicelli, M., Travaglini, L., Romani, S., Illi, B., et al. (2010). Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat. Genet. 42, 619-625. https://doi.org/10.1038/ng.594
  72. Veleri, S., Manjunath, S.H., Fariss, R.N., May-Simera, H., Brooks, M., Foskett, T.A., Gao, C., Longo, T.A., Liu, P., Nagashima, K., et al. (2014). Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat. Commun. 5, 4207. https://doi.org/10.1038/ncomms5207
  73. Vierkotten, J., Dildrop, R., Peters, T., Wang, B., and Ruther, U. (2007). Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569-2577. https://doi.org/10.1242/dev.003715
  74. Vieillard, J., Paschaki, M., Duteyrat, J.L., Augiere, C., Cortier, E., Lapart, J.A., Thomas, J., and Durand, B. (2016). Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J. Cell Biol. 214, 875-889. https://doi.org/10.1083/jcb.201603086
  75. Wang, W.J., Tay, H.G., Soni, R., Perumal, G.S., Goll, M.G., Macaluso, F.P., Asara, J.M., Amack, J.D., and Tsou, M.F. (2013). CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat. Cell Biol. 15, 591-601. https://doi.org/10.1038/ncb2739
  76. Weatherbee, S.D., Niswander, L.A., and Anderson, K.V. (2009). A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum. Mol. Genet. 18, 4565-4575 https://doi.org/10.1093/hmg/ddp422
  77. Williams, C.L., Winkelbauer, M.E., Schafer, J.C., Michaud, E.J., and Yoder, B.K. (2008). Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. Mol. Biol. Cell 19, 2154-2168. https://doi.org/10.1091/mbc.E07-10-1070
  78. Williams, C.L., Li, C., Kida, K., Inglis, P.N., Mohan, S., Semenec, L., Bialas, N.J., Stupay, R.M., Chen, N., Blacque, O.E., et al. (2011). MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023-1041. https://doi.org/10.1083/jcb.201012116
  79. Won, J., Gifford, E., Smith, R.S., Yi, H., Ferreira, P.A., Hicks, W.L., Li, T., Naggert, J.K., and Nishina, P.M. (2009). RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum. Mol. Genet. 18, 4329-4339. https://doi.org/10.1093/hmg/ddp385
  80. Won, J., Marin de Evsikova, C., Smith, R.S., Hicks, W.L., Edwards, M.M., Longo-Guess, C., Li, T., Naggert, J.K., and Nishina, P.M. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20, 482-496. https://doi.org/10.1093/hmg/ddq494
  81. Yang, T.T., Su, J., Wang, W.J., Craige, B., Witman, G.B., Tsou, M.F., and Liao, J.C. (2015). Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096. https://doi.org/10.1038/srep14096
  82. Yee, L.E., Garcia-Gonzalo, F.R., Bowie, R.V., Li, C., Kennedy, J.K., Ashrafi, K., Blacque, O.E., Leroux, M.R., and Reiter, J.F. (2015). Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLoS Genet. 11, e1005627. https://doi.org/10.1371/journal.pgen.1005627
  83. Zhang, Y., Seo, S., Bhattarai, S., Bugge, K., Searby, C.C., Zhang, Q., Drack, A.V., Stone, E.M., and Sheffield, V.C. (2014). BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum. Mol. Genet. 23, 40-51. https://doi.org/10.1093/hmg/ddt394
  84. Zhao, C., and Malicki, J. (2011). Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J. 30, 2532-2544. https://doi.org/10.1038/emboj.2011.165
  85. Zhao, Y., Hong, D.H., Pawlyk, B., Yue, G., Adamian, M., Grynberg, M., Godzik, A., and Li, T. (2003). The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl. Acad. Sci. USA 100, 3965-3970. https://doi.org/10.1073/pnas.0637349100

Cited by

  1. Polycystic kidney disease: DZIP1L defines a new functional zip code for autosomal recessive PKD vol.13, pp.9, 2017, https://doi.org/10.1038/nrneph.2017.102
  2. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone vol.217, pp.5, 2018, https://doi.org/10.1083/jcb.201709041
  3. vol.131, pp.16, 2018, https://doi.org/10.1242/jcs.218297
  4. Cilium structure, assembly, and disassembly regulated by the cytoskeleton vol.475, pp.14, 2018, https://doi.org/10.1042/BCJ20170453
  5. Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking vol.29, pp.13, 2018, https://doi.org/10.1091/mbc.E18-03-0173
  6. Cell–cell communication via ciliary extracellular vesicles: clues from model systems vol.62, pp.2, 2018, https://doi.org/10.1042/EBC20170085
  7. Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking vol.30, pp.5, 2019, https://doi.org/10.1091/mbc.E18-10-0678
  8. Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis vol.526, pp.10, 2018, https://doi.org/10.1002/cne.24441
  9. Role for intraflagellar transport in building a functional transition zone vol.19, pp.12, 2017, https://doi.org/10.15252/embr.201845862
  10. Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila vol.8, pp.None, 2017, https://doi.org/10.7554/elife.49307
  11. The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster vol.7, pp.None, 2017, https://doi.org/10.3389/fcell.2019.00173
  12. Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures vol.8, pp.2, 2017, https://doi.org/10.3390/cells8020160
  13. Ciliary and cytoskeletal functions of an ancient monooxygenase essential for bioactive amidated peptide synthesis vol.76, pp.12, 2017, https://doi.org/10.1007/s00018-019-03065-w
  14. Establishing and regulating the composition of cilia for signal transduction vol.20, pp.7, 2019, https://doi.org/10.1038/s41580-019-0116-4
  15. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes vol.8, pp.7, 2019, https://doi.org/10.3390/cells8070730
  16. Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies vol.4, pp.1, 2017, https://doi.org/10.3233/trd-190038
  17. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity vol.4, pp.1, 2017, https://doi.org/10.3233/trd-190041
  18. NPHP proteins are binding partners of nucleoporins at the base of the primary cilium vol.14, pp.9, 2017, https://doi.org/10.1371/journal.pone.0222924
  19. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models vol.9, pp.3, 2020, https://doi.org/10.3390/cells9030744
  20. MKS-NPHP module proteins control ciliary shedding at the transition zone vol.18, pp.3, 2020, https://doi.org/10.1371/journal.pbio.3000640
  21. Architecture of the IFT ciliary trafficking machinery and interplay between its components vol.55, pp.2, 2017, https://doi.org/10.1080/10409238.2020.1768206
  22. Clinical Implications of Primary Cilia in Skin Cancer vol.10, pp.2, 2017, https://doi.org/10.1007/s13555-020-00355-1
  23. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss vol.9, pp.4, 2020, https://doi.org/10.3390/cells9040931
  24. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex vol.9, pp.6, 2020, https://doi.org/10.3390/cells9061390
  25. Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation vol.133, pp.11, 2020, https://doi.org/10.1242/jcs.240838
  26. Epb41l5 interacts with Iqcb1 and regulates ciliary function in zebrafish embryos vol.133, pp.12, 2017, https://doi.org/10.1242/jcs.240648
  27. Haploid male germ cells-the Grand Central Station of protein transport vol.26, pp.4, 2017, https://doi.org/10.1093/humupd/dmaa004
  28. Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding vol.48, pp.3, 2017, https://doi.org/10.1042/bst20191007
  29. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation vol.219, pp.7, 2020, https://doi.org/10.1083/jcb.201908132
  30. Phosphoinositide lipids in primary cilia biology vol.477, pp.18, 2020, https://doi.org/10.1042/bcj20200277
  31. Structural insights into the architecture and assembly of eukaryotic flagella vol.7, pp.11, 2020, https://doi.org/10.15698/mic2020.11.734
  32. CEP290 is essential for the initiation of ciliary transition zone assembly vol.18, pp.12, 2017, https://doi.org/10.1371/journal.pbio.3001034
  33. Defective INPP5E distribution in NPHP1‐related Senior-Loken syndrome vol.9, pp.1, 2021, https://doi.org/10.1002/mgg3.1566
  34. CEP164C regulates flagellum length in stable flagella vol.220, pp.1, 2017, https://doi.org/10.1083/jcb.202001160
  35. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement vol.46, pp.None, 2021, https://doi.org/10.1093/chemse/bjab010
  36. Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry vol.10, pp.1, 2021, https://doi.org/10.1242/bio.057653
  37. Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.623753
  38. Compartmentalization of Photoreceptor Sensory Cilia vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.636737
  39. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.661350
  40. Microtubule‐associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly vol.288, pp.3, 2021, https://doi.org/10.1111/febs.15473
  41. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders vol.150, pp.None, 2017, https://doi.org/10.1016/j.nbd.2020.105236
  42. La paramécie, un organisme modèle pour étudier la ciliogenèse et les maladies ciliaires vol.37, pp.6, 2017, https://doi.org/10.1051/medsci/2021087
  43. Tracheal motile cilia in mice require CAMSAP3 for the formation of central microtubule pair and coordinated beating vol.32, pp.20, 2021, https://doi.org/10.1091/mbc.e21-06-0303
  44. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease vol.12, pp.11, 2017, https://doi.org/10.3390/genes12111762
  45. The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis vol.22, pp.22, 2017, https://doi.org/10.3390/ijms222212253
  46. Fibrogranular materials function as organizers to ensure the fidelity of multiciliary assembly vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-21506-8