• Title/Summary/Keyword: Tip-in/out

Search Result 662, Processing Time 0.024 seconds

Discharge Characteristics between Needle and Plane Electrodes in Water under Impulse Voltages (임펄스전압에 의한 침 대 평판전극에서 수중방전특성)

  • Choi, Jong-Hyuk;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper we describe discharge characteristics between needle-to-plane electrodes in water in various conditions such as different impulse voltages, polarities and water resistivities. Streamer corona is initiated at the tip of needle electrode and propagates toward plane electrode, and it experiences the final jump across the test gap. The branched channels of streamer coronas for lower water resistivities are much thicker and brighter than those for higher water resistivities at the same level of applied voltage. The negative streamer coronas not only have more branches but also widely spread out compared to the positive streamer coronas. A number of pulse-like currents ranging from some hundreds mA to a few A after streamer corona onset were produced with discharge developments. The time-lags-to breakdown for the positive polarity were remarkably shorter than those for the negative polarity. The pre-breakdown energy supplied into the test gap was inversely proportional to water resistivity.

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.

Synthesis of Top Connector for Solar Cells by Using Silver Paste (Silver Paste 를 이용한 Solar Cell 은 전극 제조)

  • Kim, Young-Kyu;Jeong, Tae-Eui;Oh, Dong-Hoon;Kim, Nam-Soo;Hong, Seong-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1837-1842
    • /
    • 2010
  • Studies on alternative energy have been carried out for many decades because of the accelerated exhaustion of fuel. While the efficacy of solar cells is still low in comparison with that of nuclear power, solar cells have been highlighted as potential sources of alternative energy because they are environmentally friendly and have a source of unlimited energy, namely, the sun. In this study, the optimum efficiency of solar cells was simulated as a function of the incident angle of sunlight and the geometric shapes of patterns using MATLAB and MathCAD software. The foremost efficiency of the solar cell was found to be 1.10 when the thickness and width of the patterns were in the range 25-$50{\mu}m$ and 50-$100{\mu}m$, respectively. To achieve the 25 um thick layer, 100,000 cps silver paste and 500 um orifice tip has been successfully implemented with Micro-Dispensing Deposition Writing.

Functional Anatomy of the Olfactory Organ in the Torrent Catfish, Liobagrus somjinensis(Siluriformes, Amblycipitidae) (섬진자가사리 Liobagrus somjienesis(Siluriformes, Adrianichthyidae) 후각기관의 기능 해부학적 구조)

  • Kim, Hyun Tae;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.65-68
    • /
    • 2018
  • The anatomical study of the olfactory organ in Liobagrus somjinensis, being related to the habitat environment and ecological habit, was carried out using a stereomicroscopy and digital camera. The paired olfactory organs are situated at the dorsal part of the snout, and consisted of two opening (anterior and posterior nostrils) and the olfactory chamber. The tubular anterior nostril is located between the tip of upper lip and the nasal barbel. The posterior nostril flat to the surface is adjacent entirely to the basement of the nasal barbel. The olfactory chamber has a rosette structure with 22~24 lamellae of linguiform, arranged transversely and radially from the medium raphe. These results may prove that L. somjinensis is dependent on olfaction, related to the hiding, the feeding and the nocturnal lifestyle in rapids.

Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model (등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가)

  • Cha, Jin-Hyun;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.731-738
    • /
    • 2012
  • In this study, the evaluation of the aerodynamic characteristics of the NREL Phase VI Rotor System has been performed, for the 7 m/s upwind case using commercial FEA and CFD tools which are ANSYS Mechanical 12.1 and CFX 12.1. The initial operating conditions of the rotor blade include a $3^{\circ}$ tip pitch angle. A numerical simulation was carried out on only the rotor parts, excluding the tower structure based on the equivalent stiffness model, to consider the aeroelastic effect for the numerical simulation using the loosely coupled 2-way fluid-structure interaction method. The blade root bending moment was monitored in real time to obtain reasonable results. To verify the analysis results, the numerical simulation results were compared with the measurements in the form of the root bending moment and the pressure distributions of the NREL/NASA Ames wind tunnel test.

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

Surface Characteristics based on Material and Process Changes in Surface Treatment using Fast Tool Servo (FTS를 이용한 나노표면개질공정의 공정변화와 소재에 따른 표면특성)

  • Kim, Mi Ru;Lee, Deug Woo;Lee, Seung Jun;Liang, Li;Kim, Jong Man;Jang, Nam-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.639-646
    • /
    • 2015
  • A treatment for improving the characteristics of a surface is very important in increasing the life of machine parts. Many studies have been carried out on the surface characteristics after such treatments. For enhanced eco-technology, an alternative to a conventional chemical surface treatment process is essential. Ultrasonic nano-crystal surface modification (UNSM) technology is a physical environmentally friendly surface treatment method. This technology was developed in domestic and currently being used. As the mechanism of UNSM technology, a ball tip attached to an ultrasonic vibration device strikes the metal surface at nearly 20,000 times per second. The resulting modified surface layer improves the surface characteristics. This paper describes a self-developed fast tool servo system applied to the UNSM process as a vibration module within a high-frequency bandwidth. After describing the surface modification process based on the material and process changes, the surface characteristics are compared.

Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements (음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구)

  • Ong, J.W.;Moon, S.I.;Jeong, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1993
  • Fracture behavior of pre-cracked compact tension specimens made of AISI 4130 steel was investigated using acoustic emission (AE) and ultrasonic C-scan measurements. While each specimen was loaded up to a certain level, various acoustic emission parameters were recorded together with the crack opening displacement (COD). An elastic-plastic finite element analysis was performed to calculate COD and the damage (plastic) zone size ahead of crack tip. Ultrasonic C-scans, in a pulse-echo, immersion mode, were done for mapping the damage zone size. The agreement between the finite element results and the measured COD was satisfactory. Based on AE results, the test specimens were found to show ductile behavior. The slope of the total ringdown counts vs. COD curve was useful to determine the crack initiation. The preliminary C-scan images showed evidence of changes in the amplitude of ultrasonic signal in the damaged region, and the shape and size of the damage zone matched qualitatively with the finite element results. A further work on the damage zone sizing was also pointed out.

  • PDF

A Study on the Fracture Toughness Characteristics of Equivalent Stress Gradient Specimen (등가응력구배시편의 파괴특성에 관한 연구)

  • Park, Keon Tae;Shin, In Hwan;Kim, Ik Hyun;Kim, Yong Seok;Kwon, Hyuck Sam;Koo, Jea Mean;Seok, Chang Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.551-557
    • /
    • 2014
  • Ideally, it is preferable to obtain the fracture characteristics of a piping from the fracture toughness of real pipes. However, a fracture toughness test on real pipes not only incurs much expense, but is very difficult to perform. Therefore fracture toughness tests have been carried out with standard specimens instead of real pipes. But, the estimates of fracture toughness obtained from standard specimens are more conservative than those of real pipes owing to the difference in the constraint effect between real pipes and standard specimens. Therefore, we have been studied with equivalent stress gradient specimen (ESG) which is designed to behave equally compared to real pipe about stress gradient on crack tip. In this study, we will evaluate fracture characteristics of equivalent stress gradient specimen by using analytical methods and compare with those of real pipe. And finally investigate suitability of equivalent stress gradient specimen.

An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

  • Korkut, Emin;Atlar, Mehmet;Wang, Dazheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-100
    • /
    • 2013
  • During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.