DOI QR코드

DOI QR Code

Discharge Characteristics between Needle and Plane Electrodes in Water under Impulse Voltages

임펄스전압에 의한 침 대 평판전극에서 수중방전특성

  • 최종혁 (인하대학교 대학원 전기공학과) ;
  • 박건훈 (인하대 대학원 전기공학과) ;
  • 이복희 (인하대공대 전자전기공학부)
  • Published : 2008.08.31

Abstract

In this paper we describe discharge characteristics between needle-to-plane electrodes in water in various conditions such as different impulse voltages, polarities and water resistivities. Streamer corona is initiated at the tip of needle electrode and propagates toward plane electrode, and it experiences the final jump across the test gap. The branched channels of streamer coronas for lower water resistivities are much thicker and brighter than those for higher water resistivities at the same level of applied voltage. The negative streamer coronas not only have more branches but also widely spread out compared to the positive streamer coronas. A number of pulse-like currents ranging from some hundreds mA to a few A after streamer corona onset were produced with discharge developments. The time-lags-to breakdown for the positive polarity were remarkably shorter than those for the negative polarity. The pre-breakdown energy supplied into the test gap was inversely proportional to water resistivity.

이 논문은 수중의 침 대 평판 전극에서 임펄스전안의 크기와 극성, 물의 저항률 등과 같은 다양한 조건에 따른 방전특성을 나타낸다. 스트리머코로나가 침전극 끝단에서 발생하며 평판전극을 향하여 진전하여 최종적으로 전극 사이가 섬락에 이르게 된다. 동일한 전압에서 물의 저항률이 작을 때 스트리머코로나의 분기로는 물의 저항률이 클때 보다 더욱 굵고 밝게 나타났다. 정극성에 비해서 부각성 스트리머코로나가 더욱 많은 분기로를 형성하며 더욱 넓게 퍼지는 것으로 나타났다. 스트리머코로나의 개시 후 방전의 진전과 더불어 수 백 [mA]에서 수 [A]에 이르는 많은 수의 전류펄스가 발생하였다. 정극성의 절연파괴까지의 지연시간은 부극성에 비하여 매우 짧았으며, 전극에 공급되는 전구방전에너지는 물의 저항률에 반비례하였다.

Keywords

References

  1. H. Akiyama, 'Streamer discharges in liquids and their applications', IEEE Transactions on Dielectrics and Electrical Insulation, Vol.7, No.5, pp.656-653, 2000
  2. Anto Tri Sugiarto, Takayuki Ohshima, Masayuki Sato, 'Advanced oxidation processes using pulsed streamer corona discharge in water', Thin Solid Films, Vol.407, No.1-2, pp.174-178, 2002 https://doi.org/10.1016/S0040-6090(02)00036-6
  3. Y. H. Sun, Y. X. Zhou, M. J. Jin, Q. Liu, and P. Yan, 'New prototype of underwater sound source based on the pulsed corona discharge', J. Electrostatic, Vol. 63, pp.969-975. 2006
  4. H. M. Jones, E. E. Kunhardt, 'The Influence of Pressure and Conductivity on the Pulsed Breakdown of Water', IEEE Trans. on Dielectrics and Electrical Insulation Vol.1 No.6, 1994
  5. D. A. Wetz, K. P. Truman, J. J. Mankowski, and M. Kristiansen,'The Impact of Surface Conditioning and Area on the Pulsed Breakdown Strength of Water', IEEE Trans., on Plasma Science, Vol. 33, No. 4, pp.1161-1169, 2005 https://doi.org/10.1109/TPS.2005.852441
  6. A. T. Sugiarto, M. Sato and J. D. Skalay, 'Transient regime of pulsed breakdown in low-conductive water solutions', J. Phys. D., Appl. Phys., Vol.34, pp.3400-3406, 2001 https://doi.org/10.1088/0022-3727/34/23/312
  7. J. Nieto-Salazar, O. Lesaint and A. Denat, 'Transient current and light emission associated to the propagation of pre-breakdown phenomena in water', Proc. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.542-545, 2003
  8. Jong-Hyuk Choi, Sang-Duk An, Bok-Hee Lee, 'Analysis of Underwater Discharge Characteristics Caused by Impulse Voltage', Journal of Korean Institute of Illuminating and Electrical Installation Engineers, Vol.22, No.2, pp.128-133, 2008 https://doi.org/10.5207/JIEIE.2008.22.2.128