• Title/Summary/Keyword: Tip area

Search Result 489, Processing Time 0.022 seconds

Area of Horn's Tip and Weldability of Cu Sheets (초음파 혼의 Tip 면적과 Cu 박판의 용착성)

  • Jang, Ho Su;Kang, Eun Ji;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.173-177
    • /
    • 2014
  • In this study, a 20,000Hz ultrasonic horn was designed and fabricated using a finite element analysis. The horn's resonate frequency was 19,991Hz, and the harmonic response frequency was 20,000Hz. In order to observe the developed horn's performance, 4,000 pieces of displacement data were obtained using an optical sensor and were analyzed using a fast Fourier transform. Finally, the developed horn's resonate frequency was found to be 19,992Hz. The effect of the tip area of the developed horn on the weldability of a Cu sheet was experimentally investigated. It was found that the welding strengths of specimens welded using a small tip area were generally higherthan those of specimens welded using a large tip area.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION ON THE MULTILOOP EDGEWISE ARCH WIRE (Multiloop Edgewise Arch Wire의 응력분포에 대한 광탄성학적 연구)

  • Lee, Sheung-Ho;Kim, Jeong-Gee
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.969-982
    • /
    • 1994
  • This study was designed to investigate the stress distribution, intensity and force mechanism derived from the MEAW by photoelastic stress analysis of the artificial teeth and surrounding bone composed of photoelastic material(PL-3) The findings of this study were as follows, 1. In case of no elastic on the MEAW with tip back, the moderate stress was observed on the molar and canine area, and the light stress was observed on the other area. 2. In case of the vertical elastic on the plain A.W, and the MEAW without tip back, the great stress was observed on the lateral incisor area, but on the MEAW with tip back, the moderate stress was observed on the anterior area and molar area. 3. In case of the C III elastic on plain A.W., the stress was concentrated on the anterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the anterior area to the posterior teeth area. On the MEAW with tip back, the great stress was observed on the anterior and molar area. 4. In case of the C III elastic on the plain A.W., the stress was concentrated on the posterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the posterior area to the anterior area. On the MEAW with tip back, the great stress was observed on the posterior area and the moderate stress was observed on the anterior area.

  • PDF

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

A Study on Determination of the Area Function of Nano Indenter Tip with AFM (AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구)

  • 박성조;이현우;한승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.

Ablation Characteristics of Bovine Liver According to Cool-Tip Temperature of RFA Equipment (고주파 열치료 장비의 Cool-Tip 온도에 따른 소간의 소작 특성)

  • Choi, Young-Jae;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • This study confirmed the correlation between the change of the cooling water in internal cooling system and the size of the ablation site of bovine liver in RF heat treatment equipment. The bovine liver was resection with $4{\times}4{\times}4cm^3$ in 2cm cool-tip and with $6{\times}6{\times}6cm^3$ in 3cm cool-tip for the experiments. Area and perimeter of the ablation site for bovine liver were measured by Freehand techniques of MRI. It showed area and perimeter decreased during cool-tip temperature rises 6 and 12 minutes ablation using a 2cm and 3cm cool-tip. The correlation of cool-tip temperature and area and perimeter was statistically significant the result are shown(p=.000). The measurements of area and perimeter were more accurate with MRI in actual measurements and MRI for ablation range. The statistical results using Paired sample T-test was also significant(p=.038). The ablation range of bovine liver decreased according as cooling water temperature increases in RF heat treatment equipment for reason of carbonization occurred due to does not accurately pass the RF energy. Therefore, it is considered the effect of RF heat treatment would be increased if the temperature of the cooling water consistently maintain the low temperature in order to reduce the generation of carbide at RF heat treatment and RF energy is delivered accurately.

The Effects of Surface Energy and Roughness on Adhesion Force (표면에너지와 거칠기가 응착력에 미치는 영향)

  • Rha, Jong-Joo;Kwon, Sik-Cheol;Jeong, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

A study on the pintle-tip shapes effect of nozzle flow using cold-flow test (핀틀 형상이 노즐 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho;Lee, Jong-Hoon;Jeon, Min-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.985-991
    • /
    • 2010
  • The objective of this work was to investigate the pintle-tip shape effect on nozzle flow and thrust by cold flow test. When nozzle throat area was decreased by pintle movement, chamber pressure was increased monotonously but thrust was increased differently according to every pintle-tip shape. At the same chamber pressure and nozzle throat area, thrust of convex pintle-tip shape was mostly larger than that of concave one. Nozzle wall pressure distribution and magnitude of pintle-tip load depended on the pintle-tip shape, pintle position and nozzle throat area.

Seamless Image Blending based on Multiple TIP models (다수 시점의 TIP 영상기반렌더링)

  • Roh, Chang-Hyun
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.30-34
    • /
    • 2003
  • Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry, Especially, TIP(Tour Into the Picture) is preferred for its simplicity in constructing 3D background scene. However, TP has a limitation that a viewpoint cannot go far from the origin of the TIP for the lack of geometrical information. in this paper, we propose a method to interpolating the TIP images to generate smooth and realistic navigation. We construct multiple TIP models in a wide area of the virtual environment. Then we interpolate foreground objects and background object respectively to generate smooth navigation results.

  • PDF