• 제목/요약/키워드: Tin Oxide($SnO_2$)

Search Result 276, Processing Time 0.028 seconds

Fabrication and characterization of $SnO_2$ anode thin film for thin film secondary battery (박막형 2차전지용 $SnO_2$음극 박막의 제작 및 특성 평가)

  • 이성준;신영화;윤영수;조원일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • In this study, Tin oxide thin film for secondary battery was deposited on Pt/Ti/Si(100). It was fabricated by r.f. reactive sputtering with Tin metal target. At constant power (130W), pressure (Base 5$\times$10$^{-6}$ Torr, working 5$\times$10$^{-3}$ Torr) and at room temperature, it was fabricated by Ar/O2 gas ratio. After deposition, we got AFM & SEM to investigated surface of thin films and had XRD to find crystalline of thin films. Charge/discharge characteristics were carried out in 1M LiPF$_{6}$ , EC:DMC = 1:1 liquid electrolyte using lithium metal at room temperature.

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

CONDUCTIVE SnO$_2$ THIN FILM FABRICATION BY SOL-GEL METHOD

  • Lee, Seung-Chul;Lee, Jae-Ho;Kim, Young-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.456-460
    • /
    • 1999
  • Transparent conducting tin (IV) oxide thin films have been studies and developed for the electrode materials of solar cell substrate. Fabrication of tin oxide thin films by sol-gel method is process development of lower cost photovoltaic solar cell system. The research is focused on the establishment of process condition and development of precursor. The precursor solution was made of tin isopropoxide dissolved in isopropyl alcohol. The hydrolysis rate was controlled by addition of triethanolamine. Dip and spin coating technique were applied to coat tin oxide on borosilicate glass. The resistivity of the thin film was lower than 0.1Ω-cm and the transmittance is higher than 90% in a visible range.

  • PDF

Properties Evaluation of $SnO_2$ : Sb transparent conductive films by $SiO_2$ barrier ($SiO_2$ barrier에 따른 $SnO_2$ : Sb 투명전도막의 특성고찰)

  • 김범석;김창열;임태영;오근호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.190-190
    • /
    • 2003
  • 여러원소 (Sb, F 등)를 도핑한 SnO$_2$ 투명전도막은 여러 가지 훌륭한 특성으로 Solar cell, heat mirrors, gas sensors, liquid crystal displays, thick film resistor 등과 같이 넓은 범위에서 응용되고 있다. 본 연구에서는 Sb 도핑된 Tin Oxide films이 Sol-gel dip coating법에 의해 준비되었다. SnO$_2$:Sb 용액은 SnC1$_2$ 와 SbC1$_3$ Power를 알코올에 용해하여 Ethylene glycol 와 Citric acid를 첨가하여 합성하였다. 막의 상형성은 XRD와 SEM(Scanning electron microscope)에 의해서 분석되었으며, 특성분석은 투과율(UV/VIS Spectrophotometer)과 표면전기저항(four point probe)으로 분석되었다. SiO$_2$ barrier이 SnO$_2$:Sb 막의 특성에 미치는 영향을 확인하기 위하여 XPS(X-ray photoelectron spectroscopy) 분석이 적용되었다.

  • PDF

Thermodynamical and Experimental Analyses of Chemical Vapor Deposition of ATO from SnCl4-SbCl5-H2O Gas Mixture ($SnCl_4-SbCl_5-H_2O$ 기체혼합물로부터 ATO(Antimony Tin Oxide) 박막의 화학증착에 관한 열역학 및 실험분석)

  • 김광호;강용관;이수원
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.990-996
    • /
    • 1992
  • Chemical vapor deposition of ATO from SnCl4-SbCl5-H2O gas mixture was investigated with thermodynamic and experimental analyses. Electrical conductivity of the ATO film was much improved under deposition conditions of low input-gas ratio, Psbcl5/Psbcl4. This increase of the conductivity was attributed to donor electrons produced mainly by the pentavalent Sb ions in SnO2 lattice. However high input-gas ratio conditions produced an ATO film consisting of a mixture of SnO2 and very fine Sb2O5 phase. It was found that the deterioration of electrical conductivity and optical transmission of the film was caused by the deposition of fine Sb2O5 phase in the SnO2 matrix.

  • PDF

Characterization of $SnO_2$ Thin Films Prepared by Thermal-CVD (열화학증착법으로 제조된 $SnO_2$박막의 특성)

  • Ryu, Deuk-Bae;Lee, Su-Wan
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • Transparent and conducting tin oxide thin films were prepared on soda lime silicate glass by thermal chemical vapour deposition. Thin films were fabricated from mixtures of tetramethyltin (TMT) as a precursor, oxygen or oxygen containing ozone as an oxidant. The properties of fabricated tin oxide films are highly changed with variations of substrate temperature. Optimized thin films could be prepared on TMT, which flow rate of 8 sccm, oxygen flow rate of 150 sccm and substrate temperature of 38$0^{\circ}C$. We reduced deposition temperature about$ 180^{\circ}C$ by using of oxygen containing ozone instead of pure oxygen and resistivity of thin films was decreased from ~ ${\times}10^{-2}{\Omega}cm$ to ~${\times}10^{-3}{\Omega}cm$.

  • PDF

Effects of Gate Insulators on the Operation of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 동작에 미치는 게이트 절연층의 영향)

  • Cheon, Young Deok;Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Transparent thin film transistors (TTFT) were fabricated on $N^+$ Si wafers. $SiO_2$, $Si_3N_4/SiO_2$ and $Al_2O_3/SiO_2$ grown on the wafers were used as gate insulators. The rf magnetron sputtered zinc tin oxide (ZTO) films were adopted as active layers. $N^+$ Si wafers were wet-oxidized to grow $SiO_2$. $Si_3N_4$ and $Al_2O_3$ films were deposited on the $SiO_2$ by plasma enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD), respectively. The mobility, $I_{on}/I_{off}$ and subthreshold swing (SS) were obtained from the transfer characteristics of TTFTs. The properties of gate insulators were analyzed by comparing the characteristics of TTFTs. The property variation of the ZTO TTFTs with time were observed.

Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries

  • Bae, Eun Gyoung;Hwang, Yun-Hwa;Pyo, Myoungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1199-1204
    • /
    • 2013
  • Nanocomposites consisting of Sn nanoparticles and graphene oxide (GO) were electrophoretically deposited onto Cu current collectors that was used for anodes in Li ion batteries (LIBs). In order to optimize the electrochemical performance of nanocomposites as an anode material by controlling the oxygen functionality, the GO was subjected to $O_3$ treatment prior to electrophoretic deposition (EPD). During thermal reduction of the GO in the nanocomposites, the Sn nanoparticles were reduced in size, along with the formation of SnO and/or $SnO_2$ at a small fraction, relying on the oxygen functionalities of the GO. The variation in the duration of time for the $O_3$ irradiation resulted in a small change in total oxygen content, but in a significantly different fraction of each functional group in the GO, which influenced the Sn nanoparticle size and the amount of SnO (and/or $SnO_2$). As a result, the EPD films prepared with the GO that possessed the least amount of carboxylic groups (made by treating GO in an $O_3$ environment for 3 h) showed the best performance, when compared with the nanocomposites composed of untreated GO or GO that was $O_3$-treated for a duration of less than 3 h.

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

Infinitely high selectivity etching of SnO2 binary mask in the new absorber material for EUVL using inductively coupled plasma

  • Lee, S.J.;Jung, C.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.285-285
    • /
    • 2011
  • EUVL (Extreme Ultra Violet Lithography) is one of competitive lithographic technologies for sub-30nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance since the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF