• Title/Summary/Keyword: Timoshenko beam element

Search Result 177, Processing Time 0.023 seconds

Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam (유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화)

  • Yun Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

Study on Detection of Crack and Damage for Cantilever Beams Using Vibration Characteristics (진동특성을 이용한 외팔보의 크랙 및 손상 검출에 대한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.935-942
    • /
    • 2009
  • In this paper, the purpose is to investigate the natural frequency of a cracked Timoshenko cantilever beams by FEM(finite element method) and experiment. In addition, a method for detection of crack in a cantilever beams is presented based on natural frequency measurements. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The detection method of a crack location in a beam based on the frequency measurements is extended here to Timoshenko beams, taking the effects of both the shear deformation and the rotational inertia into account. The differences between the actual and predicted crack positions and sizes are less than 6 % and 23 % respectively.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations (두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성)

  • 류봉조;임경빈;윤충섭;류두현
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1075-1082
    • /
    • 2000
  • The paper describes the vibration and stability of tapered beams on two-parameter elastic foundations. The two-parameter elastic foundations are constructed by distributed Winkler springs and a shearing layer as of ten used in soil models. The shear deformation and the rotatory inertia of a beam are taken into account. Governing equations are derived from energy expressions using Hamilton\`s principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration of a beam with an axial force are presented and compared when other solutions are available. Vibration frequencies, mode shapes, and critical forces of a tapered Timoshenko beam on elastic foundations under an axial force are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters and boundary conditions.

  • PDF

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통형 쉘의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.396-401
    • /
    • 1997
  • Dynamic stability of cylindrical shells subjected to follower forces is analyzed in this paper. Motion of shells is formulated in curvilinear coordinates that is consistent with assumptions made in the Timoshenko beam and the Mindlin plate. Using the finite element method, the induced equations are reduced to an equation with finite degrees of freedom. The 9-node Lagrangian element is used, and reduced integration is used to avoid shear and membrane locking. The effects of thickness ratio on the dynamic stability of cylindrical shells are studied.

  • PDF

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

An Assumed Strain Beam Element for Spatial Post-Buckling Analysis of Non-symmetric and Shear Flexible Thin-Walled Beams (박벽보의 3차원 후좌굴 해석을 위한 Locking-Free 보요소)

  • Lee, Kyoung-Chan;Kim, Moon-Young;Park, Jung-Il;Chang, Sung-Pil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.719-730
    • /
    • 2007
  • This study presents a thin-walled space frame element based on the classical Timoshenko beam theory. The element is derived according to the assumed strain field in order to resolve the shear-locking phenomenon. The shape function is developed in accordance with the strain field which is assumed to be constant at a 2-noded straight frame element. In this study, the geometrically nonlinear analysis applies the Corotational procedure in order to evaluate unbalanced loads. The bowing effect is also considered faithfully. Two numerical examples are given; monosymmetric curved and nonsymmetric straight cantilever. When these example structures behave lateral-torsional bucking, the critical loads are obtained by this study and ABAQUS shell elements. Also, the post-buckling behavior is examined. The results give good agreement between this study and ABAQUS shell.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.