• Title/Summary/Keyword: Time-to-digital converter (TDC)

Search Result 31, Processing Time 0.021 seconds

A Time-to-Digital Converter with PVT Variation Compensation Capability (PVT 변화 보상 기능을 가지는 시간-디지털 변환기)

  • Eunho Shin;Jongsun Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.234-238
    • /
    • 2023
  • In this paper, we propose a time-to-digital converter (TDC) with compensation capability for PVT (process, voltage, and temperature) variations. A typical delay line-based TDC measures time based on the inverter's propagation delay, making it fundamentally sensitive to PVT variations. This paper presents a method to minimize the resolution change of TDC by compensating for the propagation delay caused by the PVT variations. Additionally, it dopts Cyclic Vernier TDC (CVTDC) structure to provide a wide input detection range. The proposed CVTDC with PVT compensation function is designed using a 45nm CMOS process, consumes 8mW of power, offers a TDC resolution of 5 ps, and has an input detection range of about 5.1 ns.

A Design of Vernier Coarse-Fine Time-to-Digital Converter using Single Time Amplifier

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.411-417
    • /
    • 2012
  • A Coarse-Fine Time-to-Digital Converter (TDC) using the single time amplifier is proposed. A vernier delay line is used to overcome process dependency and the 2-stage time amplifier is designed to have high resolution by increasing the gain of the time amplifier. Single time amplifier architecture reduces the silicon area of the TDC and alleviates mismatch effect between time amplifiers. The proposed TDC is implemented in $0.18{\mu}m$ CMOS process with the supply voltage of 1.8 V. The measured results show that the resolution of the TDC is 0.73 ps with 10-bit digital output, although highend process is not applied. The single time amplifier architecture reduces 13% of chip area compared to previous work. By reducing the supply voltage, the linearity of the TDC is enhanced and the resolution is decreased to 1.45 ps.

A Low Power, Small Area Cyclic Time-to-Digital Converter in All-Digital PLL for DVB-S2 Application

  • Kim, Hongjin;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • In this paper, a low power, small area cyclic time-to-digital converter in All-Digital PLL for DVB-S2 application is presented. Coarse and fine TDC stages in the two-step TDC are shared to reduce the area and the current consumption maintaining the resolution since the area of the TDC is dominant in the ADPLL. It is implemented in a 0.13 ${\mu}m$ CMOS process with a die area of 0.12 $mm^2$. The power consumption is 2.4 mW at a 1.2 V supply voltage. Furthermore, the resolution and input frequency of the TDC are 5 ps and 25 MHz, respectively.

Comparison of TDC Circuit Design Method to Constant Delay Time

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.461-465
    • /
    • 2010
  • This paper describes the design method of Time-to-Digital Converter(TDC) to obtain the constant delay time and good reliability. The reliability property is described with delay elements. In TDC the time signal is converted to digital value which is based on delay elements for the time interpolation. To obtain the constant delay time, the first and the last delay elements have different structure compared to the middle delay elements. In the first and the last delay elements, the driving ability could be controlled for the different delay time. The delay element can be designed by analog and digital devices. The delay time of the element using analog devices is not sensitive to process parameters than that of the element using digital devices. And the TDC circuit by the elements using analog devices shows better reliability than that by the elements using digital devices also.

Linearity improvement of UltraScale+ FPGA-based time-to-digital converter

  • Jaewon Kim;Jin Ho Jung;Yong Choi;Jiwoong Jung;Sangwon Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.484-492
    • /
    • 2023
  • Time-to-digital converters (TDCs) based on the tapped delay line (TDL) architecture have been widely used in various applications requiring a precise time measurement. However, the poor uniformity of the propagation delays in the TDL implemented on FPGA leads to bubble error and large nonlinearity of the TDC. The purpose of this study was to develop an advanced TDC architecture capable of minimizing the bubble errors and improving the linearity. To remove the bubble errors, the decimated delay line (DDL) architecture was implemented on the UltraScale + FPGA; meanwhile, to improve the linearity of the TDC, a histogram uniformization (HU) and multi-chain TDL (MCT) methods were developed and implemented on the FPGA. The integral nonlinearities (INLs) and differential nonlinearities (DNLs) of the plain TDCs with the 'HU method' (HU TDC) and with 'both HU and MCT methods' (HU-MCT TDC) were measured and compared to those of the TDC with 'DDL alone' (plain TDC). The linearity of HU-MCT TDC were superior to those of the plain TDC and HU TDC. The experiment results indicated that HU-MCT TDC developed in this study was useful for improving the linearity of the TDC, which allowed for high timing resolution to be achieved.

A Cyclic CMOS Time-to-Digital Converter

  • Choi, Jin-Ho;Kim, Ji-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.112-115
    • /
    • 2007
  • A CMOS TDC(time-to-digital converter) is proposed which has a simple cyclic structure. The proposed TDC consists of pulse-shrinking elements, D latches and D flip-flops. The operation is based on pulse-shrinking of the input pulse. The resolution of digital output can be easily improved by increasing the number of the pulse-shrinking elements, D latches and D flip flops. The TDC performance is improved in viewpoints of power consumption and chip area. Simulation results are shown to illustrate the performance of the proposed TDC circuit.

A Study on High Resolution Time to Digital Converter for All Digital PLL (디지털 PLL을 위한 높은 해상도를 갖는 시간-디지털 변환기의 연구)

  • Kim, Yong-Woo;Ahn, Tae-Won;Moon, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.587-588
    • /
    • 2008
  • Digital PLL을 위한 높은 해상도를 갖는 TDC(Time to Digital Converter)를 $0.18{\mu}m$ CMOS 공정으로 설계하였다. 2단 구조를 갖는 TDC를 제안하였고 이를 Cadence Spectre를 이용하여 검증하였다. TDC는 Difference pulse generator, coarse 변환기와 fine 변환기로 구성된다. 그리고, 2단 변환기와 Thermometer decoder를 이용하여 delay cell의 수를 적게 유지하면서도 높은 해상도를 얻을 수 있었다.

  • PDF

A Study on the Noise Improvement of All Digital Phase-Locked Loop Using Time-to-Digital Converter (시간-디지털 변환기를 이용한 ADPLL의 잡음 개선에 대한 연구)

  • Ahn, Tae-Won;Lee, Jongsuk;Lee, Won-Seok;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.195-200
    • /
    • 2015
  • This paper presents SVBS-TDC (Semi-Vernier Binary-Search Time-to-Digital Converter) for the noise improvement of ADPLL (All-Digital Phase Locked Loop. We used a Semi-Vernier BS-TDC (Binary-Search TDC) architecture to improve the operation speed more then 10 times compared with the previous conventional BS-TDC and ensured a 510ps wide input range. The proposed Semi-Vernier BS-TDC was designed in a 65ns CMOS process and the simulation results showed 200MHz speed and 4ps resolution with a 1.2V supply voltage, and considerable noise improvement of ADPLL.

The Design of a 0.15 ps High Resolution Time-to-Digital Converter

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This research outlines the design of a HR-TDC (High Resolution Time-to-Digital Converter) for high data rate communication systems using a $0.18{\mu}m$ CMOS process. The coarse-fine architecture has been adopted to improve the resolution of the TDC. A two-stage vernier time amplifier (2S-VTA) was used to amplify the time residue, and the gain of the 2S-VTA was larger than 64. The error during time amplification was compensated using two FTDCs (Fine-TDC) with their outputs. The resolution of the HR-TDC was 0.15 ps with a 12-bit output and the power consumption was 4.32 mW with a 1.8-V supply voltage.

Design of a CMOS Time to Digital Converter with 25ps Resolution (25ps 해상도를 가진 CMOS Time to Digital 변환기설계)

  • Choi, Jin-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.166-171
    • /
    • 2004
  • This paper describes a CMOS time to digital converter (TDC) that measures the interval between two signals and converts to a digital signal. There are various methods to measure the time interval. But several architectures have a limitation in resolution and in conversion time. Moreover, they have complex algorithms. But the proposed TDC circuit has achieved a high resolution (25ps) by using a high-speed digital sampler and simple algorithm. The sampler detects when input signals comes into the TDC and output is coded. The proposed multiphase clock generator was also implemented to achieve 25p resolution.

  • PDF