• Title/Summary/Keyword: Time-step analysis

Search Result 1,656, Processing Time 0.026 seconds

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method with Compact Pade Discretization (Fractional Step 방법과 Compact Pade 차분화를 이용한 원형 실린더 주위의 난류 유동해석)

  • Chung S. H;Park K. S;Park W. G
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.50-55
    • /
    • 2003
  • Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In the present work, the accuracy of a Fractional step method, which is widely used in LES simulation, has been increased to the fourth-order accurate compact Pade discretization. To validate the present code, the flow-field past a cylinder was simulated and compared with experiment. A good agreement with experiment was achieved.

Study on Volumetric Accuracy of a CMM using step guage measurement (스텝게이지를 이용한 3차원 측정기의 입체오차 측정에 관한 연구)

  • 박희재;문준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.312-318
    • /
    • 1993
  • This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.

  • PDF

Optimum multi-objective modified step-stress accelerated life test plan for the Burr type-XII distribution

  • Srivastava, P.W.;Mittal, N.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.23-50
    • /
    • 2014
  • This paper deals with formulation of optimum multi-objective modified step-stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I censoring. Since it is impractical to estimate only one objective parameter after conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in stress levels because of limited capacity of test equipments and the presence of undesirable failure modes, therefore, an optimum multi-objective modified step-stress ALT plan has been designed. The optimal test plan consists in determining the optimum low stress level and optimal time at which stress starts linearly increasing from low stress by minimizing the weighted sum of the asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design constant stress. The method developed has been illustrated using an example. Sensitivity analysis has been carried out. Comparative study has also been done to highlight the merits of the proposed model.

  • PDF

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Ahn H. G.;Ko H. H.;Lee C. H.;Ahn B. I.;Moon W. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

The Multi-step Adomian Decomposition Method for Approximating a Fractional Smoking Habit Model

  • Zuriqat, Mohammad;Freihat, Asad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.753-765
    • /
    • 2020
  • Smoking is one of the main causes of health problems and continues to be one of the world's most significant health challenges. In this paper, we use the multi-step Adomian decomposition method (MSADM) to obtain approximate analytical solutions for a mathematical fractional model of the evolution of the smoking habit. The proposed MSADM scheme is only a simple modification of the Adomian decomposition method (ADM), in which ADM is treated algorithmically with a sequence of small intervals (i.e. time step) for finding accurate approximate solutions to the corresponding problems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The solutions obtained are also presented graphically. The results reveal that the method is effective and convenient for solving linear and nonlinear differential equations of fractional order.

Nonlinear optimization algorithm using monotonically increasing quantization resolution

  • Jinwuk Seok;Jeong-Si Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • We propose a quantized gradient search algorithm that can achieve global optimization by monotonically reducing the quantization step with respect to time when quantization is composed of integer or fixed-point fractional values applied to an optimization algorithm. According to the white noise hypothesis states, a quantization step is sufficiently small and the quantization is well defined, the round-off error caused by quantization can be regarded as a random variable with identically independent distribution. Thus, we rewrite the searching equation based on a gradient descent as a stochastic differential equation and obtain the monotonically decreasing rate of the quantization step, enabling the global optimization by stochastic analysis for deriving an objective function. Consequently, when the search equation is quantized by a monotonically decreasing quantization step, which suitably reduces the round-off error, we can derive the searching algorithm evolving from an optimization algorithm. Numerical simulations indicate that due to the property of quantization-based global optimization, the proposed algorithm shows better optimization performance on a search space to each iteration than the conventional algorithm with a higher success rate and fewer iterations.

An Experiential Analysis of Elementary School Teachers Beal ing ChiIdren with Symptoms ADHD (ADHD 아동을 대하는 초등교사의 체험분석)

  • Lee, Suk-Kyeong
    • The Korean Journal of Elementary Counseling
    • /
    • v.5 no.1
    • /
    • pp.93-118
    • /
    • 2006
  • The aim of this research is to find out the common emotional factors that elementary school teachers feel when they experience in teaching children with ADHD and to know their responding process through experiential analysis. Seven elementary school teachers took part in this research as co-investigators, and I led the experiential approach. The co-investigators have analyzed their emotional experiences during 4 sessions. They learnt about the method of experience analysis and discussed their emotional experiences of children with ADHD. And they found out some factors concerning their emotional experiences and had the time to discuss in odor to search for the common factors of that process. Finally the co-investigators took part in a session to examine the factors which they have all agreed in, and then I verified this result. 1 interpreted the factors found and constructed a psychological resolution process. Two main objectives and the results of this research are as follows. First, are there any common factors among teachers who experience in treating children with ADHD? This research showed that elementary school teachers get angry and irritated with ADHD children's troubles. Second, what kind of psychological process is there in teachers' experiences children with ADHD? The psychological process of teachers dealing children with ADHD could be conceptualized in 5 steps, the step of recognizing an action of children with ADHD, the step of first cognitive consideration, the step of giving meaning and cognitive appraisal, the step of experiencing emotion, and the step of dealing with emotion. Teachers seemed to experience a little bit different psychological process. According to whether they thought about children's behavior positively or negatively in the second step, they had different emotional experiences. If they had a positive thought, they could take children's nonadaptive behaviors as personal characteristics. However, if they took them negatively, they considered them impolite and disobedient. Even when the teachers experienced negative emotions, their responses were divided into two groups whether they took it positively or negatively. This research showed that if teachers could control their negative emotional experiences, they could calm down with children with ADHD and treat them positively.

  • PDF

Turbulent Flow Analysis around Circular Cylinder and Airfoil by Large Eddy Simulation with Smagorinsky Model (Smagorinsky model을 이용한 실린더 및 익형 주위의 LES 난류유동해석)

  • 박금성;구본국;박원규;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • As a computer has been continuously progressed to reduce R&D time and cost, the study of the flow physics has been significantly relied on the numerical method. Recently, Large Eddy Simulation(LES) has been widely used in CFD community to accurately capture the turbulent flows. The LES code requires high accuracy in time, as well as in space. Also, it should have strong robustness to ensure the convergence in various complicated flows. The objective of the present work is to develop a base code for LES simulation, having 2$^{nd}$ order accuracy in time and 4$^{th}$ order accuracy in space. To achieve the present objective, the four-step fractional step method was enhanced by adopting compact Pade'scheme. The standard Smagorinsky model was implemented for the first stage of the present code development. The flows over a cylinder and an airfoil were successfully simulated. and an airfoil were successfully simulated.

On a bivariate step-stress life test (두 개의 부품으로 구성된 시스템의 단계적 충격생명검사에 관한 연구)

  • 이석훈;박래현;박희창
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.193-209
    • /
    • 1992
  • We consider a Step Life Testing which is deviced for a two-component serial system with the considerably long life time. In the modelling stage we discuss the bivariate exponential distribution suggested by Block and Basu as the bivariate survival function for the two-component system, and develope the cumulative exposure model introduced by Nelson so that it can be used under the bivariate function. We consider inference on the component life time when the components are at work in the system by combining the information from system life test and that from the component tests carried out separately under the controlled environment. In data analysis, maximum likelihood estimators are discussed with the initial value obtained by an weighted least square method. Finally we discuss the optimal time for changing the stress in the simple step stress life testing.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.