• 제목/요약/키워드: Time-series Forecasting

검색결과 597건 처리시간 0.023초

계절변동의 함수적 예측 (Functional Forecasting of Seasonality)

  • 이긍희
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.885-893
    • /
    • 2015
  • 통계청과 한국은행 등 통계작성기관에서 이용되고 있는 계절조정은 연간 경제통계 작성시 시계열을 예측한 후 계절조정방법을 적용하여 1년 후 계절변동을 예측하고 원통계 작성시 원통계에서 이를 제거하여 계절조정계열을 작성하고 있다. 이 경우 계절변동을 효과적으로 예측하는 것이 계절조정계열의 품질 향상을 위해 무엇보다 중요하다. 계절변동은 1년 단위로 비슷한 함수적 형태를 지니면서 변하므로 계절변동은 일종의 함수적 시계열이다. 함수적 시계열은 함수적 주성분분석을 바탕으로 한 함수적 시계열모형으로 예측할 수 있다. 본 연구에서는 함수적 시계열 모형을 이용하여 향후 1년간 계절변동을 예측하는 방안을 마련하고 X-11 방식 등 기존의 예측방법과 비교하여 유용성을 파악하였다.

연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측 (Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers)

  • 주정웅;여인욱
    • 자원환경지질
    • /
    • 제50권4호
    • /
    • pp.267-276
    • /
    • 2017
  • 전라남도는 연안지역은 농업활동과 상수도의 미보급으로 인하여 지하수에 크게 의존하고 있다. 지하수의 과다사용은 지하수위 저하를 일으키며 그로 인한 해수침투가 발생할 가능성이 매우 높다. 따라서 지하수 사용에 따른 해수침투 관리가 매우 필요한 지역이다. 전라남도 무안군의 연안암반대수층에서 측정된 EC 자료를 이용하여 해안가 대수층에 적합한 시계열 모형을 구축하고, 해수침투의 지표인 EC를 예측하고자 시계열 분석을 수행하였다. 1년 이상 측정한 EC 시계열 자료는 짧은 주기적인 변동과 함께 추세적으로 증가하는 비정상 시계열의 특성을 보였다. 시계열 분석을 통해 시계열 모형 식별 결과 ARIMA 모형과 계절적인 요인을 고려 할 수 있는 SARIMA 모형 이 적합한 것으로 나타났다. 하지만 두 모형 적용한 결과, EC의 주기적인 변동으로 인해 ARIMA보다는 EC 자료의 변동 특성을 잘 반영한 SARIMA 모형이 예측에 있어서 유리한 것으로 나타났다. 위와 같이 시계열 분석은 암반 대수층에서 해수침투로 인한 EC의 변화를 예측하는데 있어 유용한 것으로 나타났다.

유해가스 배출량에 대한 시계열 예측 모형의 비교연구 (A Comparison Study of Forecasting Time Series Models for the Harmful Gas Emission)

  • 장문수;허요섭;정현상;박소영
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.323-331
    • /
    • 2021
  • With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.

팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링 (Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction)

  • 배성호;김명선;정우혁;우지환
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.45-57
    • /
    • 2024
  • 본 연구에서는 딥러닝 기반의 팜유(Crude Palm Oil: CPO) 가격 예측 방법론을 개발하였다. 팜유는 그 생산 수율과 경제적 효율성으로 인해 다양한 산업에서 중요한 자원으로 활용되고 있으며, 이로 인해 팜유 가격 변동성에 대한 산업계의 관심이 증가하고 있다. 따라서, 팜유 가격 예측을 위한 연구가 활발히 진행되고 있으나, 많은 연구가 시계열 예측 기반으로 정확도에 한계점을 가지고 있다. 본 연구는 기존 방법론의 주요 한계인 정상성 부재 문제를 해결하기 위해 현재 가격 대비 미래 가격의 비율을 종속변수로 사용하는 새로운 모델을 제시한다. 이 접근법은 주식 가격 예측에서의 수익(return) 모델링에 착안하여 개발되었으며, 단순 가격 예측보다 더 높은 성능을 나타낸다. 또한, 다변량 시계열 예측에서 중요한 요소인 독립변수의 지연 값(lag)을 고려하여, 불필요한 잡음을 제거하고 예측 모델의 안정성을 높이는 방법론을 채택했다. 이 연구는 팜유 가격 예측의 정확도를 향상시키는데 중요한 기여를 하며, 시계열 데이터가 중요한 다른 경제적 예측 문제에도 적용 가능한 접근법을 제시한다는 점에서 산업계에 큰 의미가 있다.

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구 (Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data)

  • 정철우;김명석
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2013
  • 본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.

SOM과 LSTM을 활용한 지역기반의 부동산 가격 예측 (Real Estate Price Forecasting by Exploiting the Regional Analysis Based on SOM and LSTM)

  • 신은경;김은미;홍태호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권2호
    • /
    • pp.147-163
    • /
    • 2021
  • Purpose The study aims to predict real estate prices by utilizing regional characteristics. Since real estate has the characteristic of immobility, the characteristics of a region have a great influence on the price of real estate. In addition, real estate prices are closely related to economic development and are a major concern for policy makers and investors. Accurate house price forecasting is necessary to prepare for the impact of house price fluctuations. To improve the performance of our predictive models, we applied LSTM, a widely used deep learning technique for predicting time series data. Design/methodology/approach This study used time series data on real estate prices provided by the Ministry of Land, Infrastructure and Transport. For time series data preprocessing, HP filters were applied to decompose trends and SOM was used to cluster regions with similar price directions. To build a real estate price prediction model, SVR and LSTM were applied, and the prices of regions classified into similar clusters by SOM were used as input variables. Findings The clustering results showed that the region of the same cluster was geographically close, and it was possible to confirm the characteristics of being classified as the same cluster even if there was a price level and a similar industry group. As a result of predicting real estate prices in 1, 2, and 3 months, LSTM showed better predictive performance than SVR, and LSTM showed better predictive performance in long-term forecasting 3 months later than in 1-month short-term forecasting.

단변량 시계열 모형들의 단순 결합의 예측 성능 (Performance for simple combinations of univariate forecasting models)

  • 이선홍;성병찬
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.385-393
    • /
    • 2022
  • 본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.

정보인자분석(情報因子分析)을 위한 통합예측(統合豫測)모델의 설계(設計) 및 해석(解析) (Design and Elucidation of Integrated Forecasting Model for Information Factor Analysis)

  • 김홍재;이태희
    • 품질경영학회지
    • /
    • 제21권1호
    • /
    • pp.181-189
    • /
    • 1993
  • Over the past two decades, forecasting has gained widespread acceptance as an integral part of business planning and decision making. Accurate forecasting is a prerequisite to successful planning. Accordingly, recent advances in forecasting techniques are of exceptional value to corporate planners. But most of forecasting mothods are reveal its limit and problem for precision and reliability duing to each relationship for raw data and possibility of explanation for each variable. Therefore, to construct the Integrated Forecasting Model(IFM) for Information Factor Analysis, it shoud be considered that whether law data has time lag and variables are explained. For this. following several method can be used : Least Square Method, Markov Process, Fibonacci series, Auto-Correlation, Cross-Correlation, Serial Correlation and Random Walk Theory. Thus, the unified property of these several functions scales the safety and growth of the system which may be varied time-to-time.

  • PDF

Cluster Analysis of Daily Electricity Demand with t-SNE

  • Min, Yunhong
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.9-14
    • /
    • 2018
  • For an efficient management of electricity market and power systems, accurate forecasts for electricity demand are essential. Since there are many factors, either known or unknown, determining the realized loads, it is difficult to forecast the demands with the past time series only. In this paper we perform a cluster analysis on electricity demand data collected from Jan. 2000 to Dec. 2017. Our purpose of clustering on electricity demand data is that each cluster is expected to consist of data whose latent variables are same or similar values. Then, if properly clustered, it is possible to develop an accurate forecasting model for each cluster separately. To validate the feasibility of this approach for building better forecasting models, we clustered data with t-SNE. To apply t-SNE to time series data effectively, we adopt the dynamic time warping as a similarity measure. From the result of experiments, we found that several clusters are well observed and each cluster can be interpreted as a mix of well-known factors such as trends, seasonality and holiday effects and other unknown factors. These findings can motivate the approaches which build forecasting models with respect to each cluster independently.

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.