• Title/Summary/Keyword: Time-frequency Representation

Search Result 87, Processing Time 0.028 seconds

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

Decomposition of Speech Signal into AM-FM Components Using Varialle Bandwidth Filter (가변 대역폭 필터를 이용한 음성신호의 AM-FM 성분 분리에 관한 연구)

  • Song, Min;Lee, He-Young
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.45-58
    • /
    • 2001
  • Modulated components of a speech signal are frequently used for speech coding, speech recognition, and speech synthesis. Time-frequency representation (TFR) reveals some information about instantaneous frequency, instantaneous bandwidth and boundary of each component of the considering speech signal. In many cases, the extraction of AM-FM components corresponding to instantaneous frequencies is difficult since the Fourier spectra of the components with time-varying instantaneous frequency are overlapped each other in Fourier frequency domain. In this paper, an efficient method decomposing speech signal into AM-FM components is proposed. A variable bandwidth filter is developed for the decomposition of speech signals with time-varying instantaneous frequencies. The variable bandwidth filter can extract AM-FM components of a speech signal whose TFRs are not overlapped in timefrequency domain. Also, amplitude and instantaneous frequency of the decomposed components are estimated by using Hilbert transform.

  • PDF

Characteristic wave detection in ECG using complex-valued Continuous Wavelet Transforms

  • Berdakh, Abibullaev;Seo, Hee-Don
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.278-285
    • /
    • 2008
  • In this study the complex-valued continuous wavelet transform (CWT) has been applied in detection of Electrocardiograms (ECG) as response to various signal classification methods such as Fourier transforms and other tools of time frequency analysis. Experiments have shown that CWT may serve as a detector of non-stationary signal changes as ECG. The tested signal is corrupted by short time events. We applied CWT to detect short-time event and the result image representation of the signal has showed us that one can easily find the discontinuity at the time scale representation. Analysis of ECG signal using complex-valued continuous wavelet transform is the first step to detect possible changes and alternans. In the second step, modulus and phase must be thoroughly examined. Thus, short time events in the ECG signal, and other important characteristic points such as frequency overlapping, wave onsets/offsets extrema and discontinuities even inflection points are found to be detectable. We have proved that the complex-valued CWT can be used as a powerful detector in ECG signal analysis.

State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop (보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계)

  • Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

Bandpass Discrete Prolate Spheroidal Sequences and Its Applications to Signal Representation and Interpolation

  • Oh, Jin-Sung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 2013
  • In this paper, we propose the bandpass form of discrete prolate spheroidal sequences(DPSS) which have the maximal energy concentration in a given passband and as such are very appropriate to obtain a projection of signals. The basic properties of the bandpass DPSS are also presented. Assuming a signal satisfies the finite time support and the essential band-limitedness conditions with a known center frequency, signal representation and interpolation techniques for band-limited signals using the bandpass DPSS are introduced where the reconstructed signal has minimal out-of-band energy. Simulation results are given to present the usefulness of the bandpass DPSS for efficient representation of band-limited signal.

Sound Signal Analysis Using the Time-Frequency Representations (시주파수 표현법을 이용한 소리신호의 분석)

  • Iem, Byeong-Gwan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.893-898
    • /
    • 2019
  • Time-frequency representations are methods to display the magnitude or energy density of a signal on the two dimensional plane of both time and frequency. They are useful in analyzing the characteristics of time-varying signals. Music is a typical time-varying signal, and it can be analyzed by time-frequency representations. Recently, it is popular to change the sound quality by attaching a safety sounder to an instrument. It is performed to improve perception subjectively by spending little cost and modifying sound quality. In time domain, it is difficult to notify the difference between music signals with and without the sounder. But, it is easy to find the difference in frequency domain or in time-frequency domain. In this paper, the music signal from a flute with sounder is analyzed both in the frequency domain and in the time-frequency domain. It is confirmed that the frequency components in the mid-frequency range of 500~2500 are reinforced.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

HEISENBERG GROUPS - A UNIFYING STRUCTURE OF SIGNAL THEORY, HOLOGRAPHY AND QUANTUM INFORMATION THEORY

  • Binz, Ernst;Pods, Sonja;Schempp, Walter
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.1-57
    • /
    • 2003
  • Vector fields in three-space admit bundles of internal variables such as a Heisenberg algebra bundle. Information transmission along field lines of vector fields is described by a wave linked to the Schrodinger representation in the realm of time-frequency analysis. The preservation of local information causes geometric optics and a quantization scheme. A natural circle bundle models quantum information visualized by holographic methods. Features of this setting are applied to magnetic resonance imaging.

Development of Replacement Models under Minimal Repair with Wavelet Failure Rate Functions (웨이브릿 고장률 함수를 갖는 최소수리 교체모형 개발)

  • 최성운
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.4
    • /
    • pp.91-101
    • /
    • 2001
  • This paper is to develop replacement models under minimal repair with exponential polynomial wavelet failure rate function. Wavelets have good time-frequency localization, fast algorithms and parsimonious representation. Also this study is presented along with numerical examples using sensitivity analysis for exponential polynomial trigonometric failure rate function.

  • PDF

Minimizing Frequency Drop Cost and Interference Cost in Reconfiguring Radio Networks (이동통신 네트워크에서 주파수간 간섭과 서비스 장애를 최소화하는 주파수 재할당 방법)

  • Han, Jung-Hee
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.107-121
    • /
    • 2010
  • In this paper, we present a frequency reassignment problem (FRP) that arises when we install new base stations or reconfigure radio networks to increase the capacity or to expand service area. For this problem, we develop an integer programming (IP) model, and develop cutting planes to enhance the mathematical representation of the model. Also, we devise an effective tabu search algorithm to obtain tight upper bounds within reasonable time bounds. Computational results exhibit that the developed cutting planes are effective for reducing the computing time as well as for increasing lower bounds. Also, the proposed tabu search algorithm finds a feasible solution of good quality within reasonable time bound.