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Characteristic wave detection in ECG using
complex-valued Continuous Wavelet Transforms
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Abstract

In this study the complex-valued continuous wavelet transform (CWT) has been applied in detection of Electrocardiograms (ECG) as
response to various signal classification methods such as Fourier transforms and other tools of time frequency analysis. Experiments have
shown that CWT may serve as a detector of non-stationary signal changes as ECG. The tested signal is corrupted by short time events. We
applied CWT to detect short-time event and the result image representation of the signal has showed us that one can easily find the
discontinuity at the time scale representation. Analysis of ECG signal using complex-valued continuous wavelet transform is the first step to
detect possible changes and alternans. In the second step, modulus and phase must be thoroughly examined. Thus, short time events in the
ECG signal, and other important characteristic points such as frequency overlapping, wave onsets/offsets extrema and discontinuities even
inflection points are found to be detectable. We have proved that the complex-valued CWT can be used as a powerful detector in ECG signal

analysis.
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| . INTRODUCTION

he electrocardiogram (ECG) is an indirect measure of
the electrical activity of the heart. The activity can be
measured by placing leads on the surface of the skin. Cardi-
ologists can use features of these signals to obtain important
data about the clinical condition of their patients. These
features are reflected by the morphology and duration of the
individual waves of the ECG (P, QRS complex, and T waves).
Thus detection of every component of the ECG signals can be
an extra clinical sign and can be very informative with respect
to the first manifestation of the signal. In fact, waveform
detection is necessary to determine the heart rate, and several
related arrhythmias such as Tachycardia, Bradycardia and
Heart Rate Variation: it is also necessary for further process-
ing of the signal in order to detect abnormal beats [1]. We
consider the clinical criteria for determining the starting points
and endpoints of the P' wave, QRS complex and T wave as
very important. We also consider that in the body surface ECG
lays more information.
Producing an algorithm for the detection of ECG signal

Corresponding Author : Se0 Hee—Don

Department of Blectronic Engineering , Yeungnam University.
Gyeongbuk, Gyeongsan 214-1, Korea

Tel: +82-53-810-2553 / Fax : +82-53—-810- 4770
E-mail : hdseo@ynu.ac.kr

278 | 1. Biomed. Eng. Res.

characteristic points is a difficult problem due to the time-
varying morphology of the signal subject to physiological
conditions and the presence of noise. Recently, a number of
wavelet-based techniques have been proposed to detect these
features. Senhadji et al compared the ability of wavelet tran-
sform based on three different wavelets (Daubechies, Spline,
and Morlet) to recognize and describe isolated cardiac beats
[2]. Sahambi et al used a first-order derivative of the Gaussian
function as a wavelet for the characterization of the ECG wave
forms. They used modulus maxima-based wavelet analysis to
detect and measure various parts of signal especially the
location of the onset and offset of the QRS complex and P and
T waves [3].Since the application of wavelet transformation in
electrocardiology is relatively new fields of research and
many methodological aspects of the wavelet technique will
require further investigations in order to improve the clinical
usefulness of this novel signal processing technique.

In this research we applied over complete complex-valued
CWT which best suits for the analysis of ECG signals by
complex nature of wavelet transforms. We propose the
wavelet-based technique for the detection of signals using
real-valued and complex valued wavelets. This technique
exploits localization property of CWT where narrow signal
elements are present across wide range of scales in time scale



represented signal. So called maximum curves are generated
using local maxima of the CWT modulus and tracks CWT
modulus ridges. The method shows how modulus and phase of
complex-valued CWT can be used in analysis of ECG signal
characteristic waves. We demonstrated that complex-valued
CWT can be used as a good technique to extract ECG signal
characteristic points.

Il. MATERIALS AND METHODS

A. Continuous Wavelet Transforms

The wavelet transform enables time-frequency representations
of the signal, all with different resolutions: high resolution in
time and low resolution in frequency for high frequencies and
low resolution in time and high in frequency for low freg-
uencies. The CWT does this by having a variable window
width, which is related to the scale of observation. Any signal
f(t)can be decomposed into a set of base functions ¥, ()
which are called the wavelets. The Continuous Wavelet Trans-
form is obtained by formula [5]:

Asn= [ pw) W, M

where * denotes complex conjugation. The variables s and 7
denotes scale and translation. The wavelets are generated from
a single base wavelet ¢, the so-called mother wavelet, by
scaling and translation:

b= =y 1T ©)

In equation (2) s is the scale factor, 7 is translation factor
and the factor /s is for energy normalization across different
scales. Generally speaking -, (¢) is obtained by the following
process: the basic wavelet (with scale s = 1) is shifted along
the signal f(¢) and for each value of time shifting 7 the
integral (1) is computed, then the wavelet window is stretched
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by factor s (the width of the wavelet window is increased s
times) and again shifted along the signal. This process can be
repeated over and over again. The larger scale the lower
frequency components that are treated.

The advantage of CWT over other time-frequency transfor-
mations is that the CWT is not limited to using sinusoidal
analysing functions. Rather, a large selection of localized
wave forms can be employed as long as they satisfy predefined
mathematical criteria. Coefficients of the CWT are denoted as
~+(s, ) for particular scale (s) and translation(7). Scale can
be treated as frequency, and translation as time, but
considering that larger scales represent the lower frequencies.

Wavelets are basis functions used for expansion. They are
characterized by a number of properties that determine their
use in the frame of time-frequency localization. Formally, a
real valued function ¥ (¢) is called a wavelet if it satisfies two
constraints defined by

/m Y(t)dt= 0 and /m V)dt=1 3)

The first part of Eq.3states that the wavelet oscillates, the
second part says the wavelet must be nonzero somewhere. The
properties of wavelets may serve as a key for selection of
function for a specific application. Briefly, while analysis
needs even non-orthogonal wavelets, compression requires
orthogonal and smooth wavelets. Filtering may require sym-
metrical functions and rational coefficients of filters correspo-
nding to wavelets. The following properties are most discussed
in literature: orthogonality, compact (finite) support, rational
coefficients of corresponding filters, symmetry, smoothness ,
and analytic expression{8].

a) Real valued wavelets

The most used and/or discussed real-valued wavelets are:
Haar wavelet, family of Daubechies wavelets, Morlet wavelet,
Meyer wavelet, Mexican hat wavelet, family of Coiflet wavelets,
family of Symlet wavelets, and biorthogonal wavelets. Time

Table 1. Time resolution, frequency resolution and time-frequency resolution of selected real-valued wavelets.

wavelet Af Afﬂ Af A?U
Morlet 0.7071 0.07081 0.5007
Gaussian No.2 0.7637 0.6889 0.5261
Mevyer 0.8418 0.9824 0.8271
Daubechies No.2 1.540 9.424 14.51
Haar 0.5775 130.6 75.44

Theoretical minimum of A2 A2 is 0.5,
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Table 2. Time resolution, frequency resolution and time-frequency resoiution of selected complex -valued wavelets, Theoretical minimum of A f A iis 05

wavelet Af A?H Af Ai}

cpx Morlet No.1-0.5 0.3533 1416 0.5006

(real or imaginary part)
cpx Kingsbury {real part) 1.552 3.418 5.306
cpx Kingsbury (imaginary part) 1.565 3.681 5.765
cpx Daubechies No.6. 2596 3.066 7749

{real part)

cpx Daubechies No.6 {imaginary part} 2.647 3.363 8.904

and frequency resolution of various wavelets differ. The ideal
resolution value is represented by an equality curve A} A2

= 0.5. Results for all wavelets lay right and above the
equality curve. The closer to the equality curve, the better time
resolution, frequency resolution, or both resolutions are. The
results for selected wavelets are summarized in Tablel [5].

b) Complex valued wavelets

The most used and/or discussed complex-valued wavelets
are: Complex Gaussian wavelets, Complex Daubechies wavelets,
Complex Kingsbury wavelet, Complex Morlet wavelets,
Complex Frequency B-spline wavelets, Complex Shannon
wavelets. Time and frequency resolution of various complex-
valued wavelets differ too. The results for selected wavelets
are summarized in Table 2.

Complex-valued wavelet transform plays a special role in
signal analysis. Complex nature of wavelets provides further
improvement in signal detection compared to real-valued
wavelet analysis. This is possible by using so called dual-tree
processing through cross-correlation with real and imaginary
parts of wavelets. The resulted complex-valued time-frequency
image (CWT) can be further analyzed by detection of
significant attributes in its modulus and phase. In this way, not
only the waves can be detected but also various shapes of the
waves can be distinguished.

B. ECG characteristic wave detection algorithm
The algorithm presented in this section is applied directly at

one run over the whole digitized ECG signal which we
acquired using from subject. There are actually four separate
algorithms, each of which is designed to extract certain
features of the ECG signal. The description of the ECG wave
detection algorithm is shown in Fig.1.

The first, the peak of the QRS complex with its high
dominated amplitude in the signal is detected. Then Q and §
waves are detected.

The Zero voltage level of the signal is found. P and T waves
along with their onsets and offsets are the last things to be
detected.

ll. RESULTS AND DISCUSSION

In this paper, we also mention best basis wavelet functions
that are well suited for detecting and localization of important
ECG events. This is an important point to be discussed how to
choose the mother functions to be compared with the signal. In
principle, the wavelet function should have a certain shape
that we would like to localize in the original signal. However,
due to mathematical restrictions, not every function can be
used as a wavelet. Then, one criterion for choosing the wavelet
function is that “it looks similar” to the patterns of the original
signal. In respect, our choice is motivated by the shape of the
waveforms to be detected in the ECG signal. These wavelet
functions are Morlet and complex Morlet No.1-05 and
complex Gaussian No.1-05. We will see the performance of
these wavelets on ECG wave detection in this section.

ECG analyzed ECG analyzed _,: ECG analyzed
Signal Signat Signal ’
ECG analyzed EfECG analyzed 4__ ECG analyzed
Signal Signal Signal ]

Fig, 1. The flowchart of the proposed detection algorithm
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Fig, 2, The analyzed ECG signal and its segments with three main waves
denoted by R, QRS-complex and T.

We use a typical example of a discrete-time biological
(ECG) signal as shown in Fig.2 in our experiment. The signal
is sampled at rate of f = 500Hz. One can see the signal has
relatively flat segments that alternate with low-amplitude and
high amplitude waves of different frequency contents. Further
the signal contains small colour (13) noise over the whole
signal curve (signal-to- noise ratio is relatively high). From a
physiological point of view, the test signal represents a
recording of heart electrical activity during a single heart
cycle. The cycle is composed of P-wave, ORS - complex,
ST-segment, T-wave, other minor waves and segments. The
described ECG signal has been chosen for demonstration of
wavelet real-valued and complex-valued wavelet analysis for
easier discussion on the application of complex-valued CWT.

The three main waves/peaks can be located in time. The
first wave is located at around t=400msec(small +/-
bipolar wave marked by P in Fig.2, the second one is at around
t = 85msec(high +/- bipolar wave marked by ORS), and the
last one at around ¢ — 145msec (high negative wave marked
by 7). These characteristic waves will be analyzed in the
following patt.

In the first step we analyzed the signal by applying
complex-valued continuous wavelet transform to detect
possible changes and alternans of ECG signal. As the second
step, modulus and phase has been thoroughly examined. Thus,
the main signal wave can be detected and the maxima,
minima, or even inflection points found as detectable with
wave onsets and offsets.

We start analyzing the signal by using CWT of Morlet
wavelet. The CWT time frequency plane shown as 3D plot of
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sart abs CWT of signal(t)
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50 100
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Fig. 3. CWT 3D time scale representation of the analyzed signal using Morlet
wavelet.

absolute value of the wavelet coefficients is depicted in Fig.3.
One can easily find the three wave components mentioned
above P, QRS and T waves. The resulted time frequency plane
shows that significant waves are represented by peaks that
have ripple nature. This is caused by localization property of
the wavelet transform and follows character of the analysis
wavelet. In addition we can see that the time events (waves)
can be easily located in the time-frequency domain and the
events can further be well bounded. The other characteristic
points of the signal can be detected such as inflection and
maxima and minima points represented in wavelet
coefficients. The output result demonstrates the powerful
capability of continuous wavelet transform to extract several
characteristics at once.

Next we present the abilities of complex-valued CWT to
analyse the signal. The analyzed signal has not been filtered to
remove unwanted noise due to the possible damage of useful
signal components. For the demonstrations of the wavelet
transform the analyzed signal has been artificially corrupted
by a short-time event - a discontinuity in first derivative at
t = 132msec. Such discontinuity can hardly be seen in the
time domain without further processing. The signal has been
transformed using the complex Morlet wavelet No.1-0.5.

As the CWT promises to detect short-time events regardless
their frequency contents, we should obtain significant
differences between resulting time-frequency images. The
images are complex-valued. Thus possibilities to visualize the
results are boarder than in the real-valued CWT case. First, the
modulus has been computed and visualized as a 2D shaded
contour plot with increased dynamics by applying square root

2+ 29 | August, 2008 281



Characteristic wave detection in ECG using complex—valued Continuous Wavelet Transforms

analysed signal s(t)

0.04 : : : .
003 :
0 i
9 o002 i i
g i :
€ ool H H
® i i
o Py M/ | -
-001
H H
50 100

() time(msec)

D/| 8PS

abs CWT of signal s(t)

discontinity

/

50 100 150

(b) time(msec)

200

Fig. 4. (a) Signals (¢) with artificial discontinuity in first derivative and (b) its modulus of CWT using complex Morlet wavelet No.1-0.5

(see Fig.4 (b)). Studying the modulus of CWT output depicted
at time around ¢ = 132msec one can easily find a circular
object located at scales ¢ = 35 — 45 (mid-frequencies). Although
the object is low in value, it is detectable with relatively good
time resolution. This is also very important information to
extract when studying the ECG signals.

The output of the complex-valued wavelet analysis can be
presented in another way. Modulus and phase of the CWT
may be replaced by a real part and imaginary part of the CWT.
Thus the complex-valued CWT is computed via the dual-tree

algorithm. This corresponds to pure CWT analysis by two
different wavelets (a real part and an imaginary part of the
same complex-valued wavelet).

The results, absolute value of the real part and the imagi-
nary part of the complex-valued CWT is shown in Fig.5 using
Gaussian No.3 wavelet. One can see differences between the
real and imaginary part of the CWT. This is caused by
different shape of the real and the imaginary part of the used
wavelet. The used Gaussian No.3 wavelet is displayed in
Fig.6.We can see the difference of the shape of the wavelet
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Fig. 6. (a) Real part and (b) imaginary part of complex Gaussian wavelet No.3

basis functions which yields different results in the CWT
output representation.

The difference between modulus, the real part and the
imaginary part of the CWT are below discussed on detail of
the analyzed signal (Fig.7 (a)).

Let's take the same segment as in real-valued analysis case:
85 msec to 150msec in Fig,7. (a). The important wave is the T-
wave (marked by circle above) at time around? = 150msec.
Modulus of time-frequency image (see Fig.7.(b)) displays this
wave as a single peak centered at ¢ = 155msec and a = 21 .
The peak monotonically decays to all directions. The slowest
decay is along scale axis towards low scales (high frequencies).

The real part of the CWT (Fig.8 (a)) displays the wave T
similarly as a peak of almost same time duration and same
frequency contents. The only difference is that the peak is
composed of three “bumps” spread along the scale axis. The
middle “bump”is located at the inflection point of the wave at

analysed signal
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time ¢ = 155msec. The location is equal to location of the
center of the peak in modulus of the CWT. The reason is that
both the wave and the real part of the wavelet have
anti-symmetrical shape. CWT provides correlation between
the signal and the wavelet that naturally results in a peak
located at the center of the wave being detected.

The imaginary part of the CWT (Fig.8 (b)) displays the
wave T similarly as the real part of the CWT. The only
difference is that the center of the wave being detected is in
between two “bumps”. The reason is that the imaginary part of
the wavelet is symmetrical contrary to the wave shape.

Phase of the CWT is sensitive to different events than
modulus of the CWT. Therefore, different time stamps have
been chosen. Panel (a) of Fig.9 contains four time stamps at
t=45msec, t=85msec, 150msec, and 175msec,
marked by four vertical dotted lines. The stamps stand for the
following significant points: the wave P inflection point, the

Modulus of Ca.b

\ D S90S
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Fig. 7. (a) Detail of the ECG signal, and (b} its modulus of CWT using the complex Gaussian wavelet No.3.
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Fig. 8. (a) Real part, and (b) imaginary part of CWT of the ECG signal from the
complex Gaussian wavelet No.3

wave ORS peak, the wave T, and its inflection point. The same
stamps are shown in the panel (b). We can see that number of
parameters can be observed in the CWT images/plots: prese-
nce and position of the peaks slope of the peaks in various
directions, etc.

Detection of waves and short-time events is an important
part of ECG signal analysis. Thus, the signal can be examined
to find differences from a reference signal, track long-term
trends, and multiple time overlapping and/or frequency
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Fig. 9. (a) Detail of the ECG signal and (b) its phase of CWT using the

complex Gaussian wavelet No.3.

overlapping changes. Traditional time-domain and frequency-
domain detection methods are based on correlation and cross-
correlation, coherence, cross-spectra, cepstra, and many other
signal processing tools. Time-frequency approach exploits
expansion on series to decompose the signal into multiple
frequency bands. Further, time and frequency resolution can
be individually changed in the bands and thus the analysis
algorithm can be adapted to the discontinuity being detected.
In this paper we demonstrated the detection ability of

Table 3, Validation results for the proposed ECG detection algorithm applied to six records from the MIT-BIH.

ECG record number False Positive

False detections

Beats False Negative Beats %
100 2272 1 1 0.04
101 1864 1 0.05
102 2187 0 0 0
103 2084 17 4 21 0.9
104 2229 10 13 0.7
105 2571 1 1 0.04
Total 13207 30 19 49 0.28
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complex-valued CWT transforms in analysis of ECG signal
by comparing to the real valued case. Together they can be
used as a good detector algorithm for diagnosing the normal
and abnormal ECG characteristic waves.

As the final step, the overall performance of the algorithm
has been tested on six 30min recordings from the MIT-BIH
arrhythmia database [10], in where only channel 1 of the
two-channel ECG recordings was used. The selected recor-
dings included noise bursts, baseline drifts and movement
artifacts. Table 3 shows the detection performance of the
algorithm for QRS waveform. In results we achieved 49 false
detections where 30 of them were false positives and 19 were
false negatives. The table 3 shows us only false detections
since it's also important to decrease the number of false
detections of the ECG waves. Here false positive defines the
detection of noise as QRS wave while false negative means
the number of misses of real waveforms. We can evaluate the
false detection in percentage where we achieved0.28% which
is very low in value. Thus the proposed work achieves the
accuracy of true detections almost for 98% for the case of QRS
wave. We have tested the algorithm in other ECG waves
which resulted in almost same accuracy in detection.

IV. CONCLUSION

Behavior of the complex-valued continuous wavelet transf-
orm (CWT) as response to various signal types has been
discussed in this work. Experiments have shown the complex-
valued CWT can be used for detection of waves representing
the characteristic points of the signal. Studying CWT of the
artificially corrupted signals, one can find detectable characte-
ristic points in modulus as well as phase of CWT. The
modulus reveals the differences as additional peaks in its
image. Although the differences are small in value, they
change shape of original peaks in modulus image or they
generate separated peaks. The phase responses even more
sensitively regardless the noise wave amplitude. Any new
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signal component is revealed as new phase step along time
axis. Analysis of signals using complex-valued continuous
wavelet transform is the first step to detect possible changes or
alternans. In the second step, modulus and phase must be
thoroughly tested. The proposed method can be used as an
alternative approach in analyzing ECG signals with good
detection ability.
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