• Title/Summary/Keyword: Time-dependent boundary conditions

Search Result 107, Processing Time 0.023 seconds

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Analysis of Friction Stir Welding Process of Mg alloy by Computational Fluid Dynamics (유동 해석을 통한 마그네슘 합금의 마찰교반용접 분석 연구)

  • Kim, Moosun;Sun, Seung-Ju;Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.679-684
    • /
    • 2017
  • Friction Stir Welding is a metal welding technique, in which friction heat between a welding tool and a welding material is used to weld parts at temperatures below the melting point of a material. In this study, the temperature and velocity changes in a magnesium alloy (AZ31) during the welding process were analyzed by computational flow dynamics technique while welding the material using a friction stir welding technique. For the analysis, the modeling and analysis were carried out using Fluent as a fluid analysis tool. First, the welding material was assumed to be a temperature-dependent Newtonian fluid with high viscosity, and the rotation region and the stationary region were simulated separately to consider the rotational flow generated by the rotation of the welding tool having a helical groove. The interface between the welding tool and welding material was given the friction and slip boundary conditions and the heat transfer effect to the welding tool was considered. Overall, the velocity and temperature characteristics of the welded material according to time can be understood from the results of transient analysis through the above flow analysis modeling.

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

Effect of amount of magnesia on wear behavior of silicon nitride (마그네시아 양이 질화규소의 마모거동에 미치는 영향)

  • 김성호;이수완;엄호성;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • The microstructure of ceramic composite has been found to be governed by the type and amount of the secondary phase, the sintering aid, and the sintering conditions such as sintering temperature, pressure and holing time. Moreover, tribological properties are strongly dependent on microsturcture of composite and operating conditions. In this study, silicon nitride with various amount of magnesia as a sintering aid were prepared and sintered by a hot pressing (HP) technique. Microstructure, mechanical properties (hardness, strength, and fracture toughness), and tribological properties in different environments of $Si_{3}N_{4}$ (in air, water, and paraffine oil) were investigated as a function of MgO content in $Si_{3}N_{4}$. As increasing the amount of MgO in $Si_{3}N_{4}$, the glassy phase in the grain boundaries enlarged the $\beta$-phase elongated grains, and also degraded the Hertzian contact damage resistance. Tribological behaviors in air was seemed to be determined by fracture toughness of $Si_{3}N_{4}$, and those in water and paraffin oil was seemed to be determined by hardness as well as strength. Since glassy grain-boundary phase (MgO) in $Si_{3}N_{4}$ expected to be reacted with water during sliding, such tribochemical reaction reduced wear. In paraffin oil under a higher applied load, the initial sliding dominated wear rate because of Hertzian contact damage.

  • PDF

A Study on Welding Deformation of thin plate block in PCTC (PCTC 박판 블록 용접 변형에 관한 연구)

  • Kang, Serng-Ku;Yang, Jong-Su;Kim, Ho-Kyeong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF