DOI QR코드

DOI QR Code

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures

미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성

  • Lee, Shi-Woo (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Seung-Young (Department of Metallurgical Engineering, Chungnam National University) ;
  • Lee, Kee-Sung (Energy Materials Research Team, Korea Institute of Energy Research) ;
  • Woo, Sang-Kuk (Energy Materials Research Team, Korea Institute of Energy Research) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, KAIST)
  • 이시우 (한국과학기술원 재료공학과) ;
  • 이승영 (충남대학교 금속공학과) ;
  • 이기성 (한국에너지기술연구원 에너지재료연구팀) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구팀) ;
  • 김도경 (한국과학기술원 재료공학과)
  • Published : 2002.01.01

Abstract

Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

고상 반응법을 통해 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ 페롭스카이트계 산소투과 분리막을 제조하였으며, 미세구조에 따른 산소투과 특성 및 기계적 특성을 고찰하였다. 분리막의 미세구조는 소결온도 및 소결 유지시간을 달리함으로써 조절하였으며, 미세구조에 따른 평균 입경 및 상대밀도의 변화를 평가하였다. 입계 분율의 감소에 따라 산소투과유속이 증가하는 경향을 나타내었으며, 본 연구에서 고찰한 소결조건 중에서는 1300${\circ}C$에서 10시간 유지하여 제조한, 상대밀도가 높고 비교적 입경이 조대한 분리막 시편의 경우, 최대 0.37 ml/$cm^2$${\cdot}$min의 산소투과유속이 특정되었다. 파괴강도는 소결체의 상대밀도에 의존적이었으며, 파괴인성은 결정립의 크기에 따라 증가하는 경향을 나타내었다.

Keywords

References

  1. Y. Teraoka, H. M. Zhang and S. Yamazoe, 'Oxygen Permeadon through Perovskit-type Oxide,' Chem. Lett., 1743-46 (1985)
  2. H. Kruidhof, H. Bouwmeester, R. von Doorn and A. Burggraaf, 'Influence of Qrder disorder Transidons on Oxygen permeability through Selected Nonstoichiometric PerovskiteType Oxides,' Sotid State lonics, 63 816-22 (1993) https://doi.org/10.1016/0167-2738(93)90202-E
  3. L. Qui, T. H. Lee and Y. L. Jacobson, 'Oxygen Penneation Study of SrCoFe$O_3$' Solid State lonics, 76 321-29 (1995) https://doi.org/10.1016/0167-2738(94)00296-5
  4. J. W. Stevenson, J. R. Armstrong, R. D. Carmeim, L. R. Pederson and L. R. Weber, 'Electrochemical Properties of Mixed Conducting Perovskite $La{1-x}M_xCo_{1-y}Fe_yO_{3-\delta}$ (M=Sr, Ba, Ca),' J. Electrochem. Soc., 143 2722-29 (1996) https://doi.org/10.1149/1.1837098
  5. C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser and M. R.Pascucci, 'Dense Perovskite $La{1-x}M_xCo_{1-y}Fe_yO_{3-\delta}$ (M=Sr, Ba,Ca) Membrane Synthesis, Application and Characterization,'J. Am. Ceram. Soc., 81 1437-44 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02501.x
  6. S. J. Xu and W. J. Thomson, 'Stability of $La{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Perovskite Membrane in Reducing and Nonreducing Environment. Ind. End,' Chem. Res., 37 1290-99 (1998) https://doi.org/10.1021/ie970761j
  7. The CRC handbook of solid state electrochemistry, edited by P. J. Gellings, CRC press Inc., Ch. 7
  8. S. Li, W. Jin, P. Huang, N. Xu, J. Shi and Y. S. Lin, 'Tubular Lanthanum Cobaltite Perovskite Type Membrane for Oxygen Permeadon,' J. Membrane Sci., 166 51-61 (2000) https://doi.org/10.1016/S0376-7388(99)00244-6
  9. W. Jin, S. Li, P. Huang, N. Xu, J. Shi and Y. S. Lin, 'Tubular Lanthanum Cobaldte Perovskite lype Membrane Reactor for Pardal Oxidation of Methane to Syngas,' J. Membrane Sci., 166 13-22 (2000) https://doi.org/10.1016/S0376-7388(99)00245-8
  10. J. D. Kim, J. W. Moon, G. D. Kim and C. E. Kim, 'Preparation of (La,Sr)Mn$O_3$ Powder by Glycine nitrate Process Using Oxide as Staiting Materials,' J. Kor. Ceram. Soc., 34 1003-08 (1997)
  11. K. T. Lim, K. S. Lee, D. W. Seo, I. S. Han, K. S. Hong, K. Bai, S. K. Woo and T. L. Cho, 'Fabrication and Charactehzation of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Oxygen Permeation MembranePrepared with DiSFerent Powders,' J. Kor. Ceram. Soc., 38886-93 (2001)
  12. O. Fukunaga and T. Fujita, 'The Relation Between ionic Radii and Cell Volume in the Perovskite Compound,' J. Solid State Chem., 8 331-38 (1973) https://doi.org/10.1016/S0022-4596(73)80030-1
  13. K. T. Lim, T. L. Cho, K. S. Lee, S. K. Woo, K. B. Park and J. W. Kim, 'Oxygen Penneadon Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Mixed conducdng Membrane,' J. Kor. Ceram. Soc., 38 787-93 (2001)
  14. S. J. Hong, K. Mehta and A. V. Virkar, 'Effect of Microstructure and Composidon on lonic Conductivity of RareEarth Oxide doped Ceria,' J. Electmchem. Soc., 145 [2] 638-47 (1998) https://doi.org/10.1149/1.1838316
  15. H. E. Schaefer, K. Reimann, W. Straub, F. PhimpP, H. Tanimoto, U. Brossmann and R. Wurschum, 'Interface Structure Studies by Atomic Resoludon Electron Microscopy, Orderdisorder Phenomena and Atomic Dtffusion in Gas-phase Synthesized Nanocrystalline Solids,' Mater. Sci. & Eng. A, 28624-33 (2000) https://doi.org/10.1016/S0921-5093(00)00659-6
  16. V. V. Kharton, 'Surface Modification of $La_{0.3}Sr_{0.7}CoO_{3-\delta}$ Ceramic Membrane,' J. Membrane Sci., 195 277-87 (2002) https://doi.org/10.1016/S0376-7388(01)00567-1
  17. L. Braun, S. J. Bennison and B. R. Lawn, 'Objective Evaluation of Short crack Toughness Curves Using Indentadon Flaws : Case Study on Alumina based Ceramics,' J. Am. Ceram. Soc., 75 [11] 3049-57 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04385.x