• Title/Summary/Keyword: Time-based Control

Search Result 9,002, Processing Time 0.052 seconds

A study on the microcomputer-based adaptive control system of a steam generator (적응제어알고리즘을 이용한 원자력발전소용 증기발생기 수위제어 시스템에 관한 연구)

  • 배병환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.658-663
    • /
    • 1987
  • The new controller developed here, which is the facility with only one measurement, is a new concept for the level controller of the existing nuclear steam generator. A MACS (Microcomputer-based Adaptive Control System of a Steam Generator) is quite practical and efficient, and has also simple structure and higher flexibility in the installment for actual plant. A key ingredient of this system is adaptive regulator which can calculate adaptive, optimal valve position in response to changes in the dynamics of the process and the disturbances. In spite of many difficulties in the steam generator water level control at low power, it can be concluded from the experimental and simulation results, that the MACS can provide optimal, robust steam generator level control from zero to full power. The amount of the control input effort can be reduced by adjusting the weighting factor. However, the steady state water level errors are generated. To avoid the steady errors, the different adaptive algorithm should be investigated in the future. The 3 second sampling time is acceptable for this system. However, action should be taken to shorten the sampling time for better digital control.

  • PDF

Composite Fuzzy Control of a Single Flexible Link Manipulator (단일 유연 링크 매니퓰레이터의 복합 퍼지 제어)

  • 김재승;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.353-353
    • /
    • 2000
  • To control a light weight flexible manipulator, a composite fuzzy controller is proposed. The controller is designed based on two time scaled models. A singular perturbation technique is applied for deriving the models. The proposed controller, however, does not use the complex equilibrium manifold equations, which are usually needed in the controller based on the two time scaled models. The controller for a slow sub-model and a fast sub-model are T-S type fuzzy controllers, which use 3 linguistic variables for each sub-model. A step trajectory is used in simulations as a reference trajectory of joint motions. The results of simulations with the proposed controller show excellent damping of flexible motions compared to a controller with derivative control of flexible motions.

  • PDF

Leader-Following Based Adaptive Formation Control for Multiple Mobile Robots (다개체 이동 로봇을 위한 선도-추종 접근법 기반 적응 군집 제어)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.428-432
    • /
    • 2010
  • In this paper, an adaptive formation control based on the leader-following approach is proposed for multiple mobile robots with time varying parameters. The proposed controller does not require the velocity information of the leader robot, which is commonly assumed that it is either measured or telecommunicated. In order to estimate time varying velocities of the leader robot, the smooth projection algorithm is employed. From the Lyapunov stability theory, it is proved that the proposed control scheme can guarantee the uniform ultimate boundedness of error signals of the closed-loop system. Finally, the computer simulations are performed to demonstrate the performance of the proposed control system.

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

A Dynamic Modeling of 6×6 Skid Type Vehicle for Real Time Traversability Analysis over Curved Driving Path (곡선주행 실시간 주행성 분석을 위한 스키드 차량의 동역학 모델링)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.359-364
    • /
    • 2012
  • Real-Time Traversability should be analyzed from the equiped sensors' data in real time for autonomous outdoor navigation. However, it is difficult to find out such traversability that considers the terrain roughness and the vehicle dynamics especially in case of skid type vehicle. The traversability based on real time dynamic analysis was proposed to solve such problem but in navigation with strait driving path. To adapt the method into the navigation with curved driving path, a path following controller should be incorporated into the dynamic model even though it cause the real time problem. In this paper, a dynamic model is proposed to solve the real time problem in the traversability analysis based on real time dynamic simualtion. The dynamic model contains the control dummy which is connected to the vehicle body with a universal joint to follow the curved path without controller. Simulation and experimental results on $6{\times}6$ articulated unmanned ground vehicle demonstrate the method's effectiveness and applicability into the traversability analysis on terrain with bumps.

Development of Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 센싱 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.649-657
    • /
    • 2004
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart wiper system and the rain sensing algorithm that regulate speed and interval of wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in the simulator model. Especially the vision sensor can measure wider area relatively than the optical rain sensor, hence, this grasps rainfall state more exactly in case disturbance occurs.

Indirect Decentralized Learning Control for the Multiple Systems (복합시스템을 위한 간접분산학습제어)

  • Lee, Soo-Cheol
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 1996.11a
    • /
    • pp.217-227
    • /
    • 1996
  • The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performin this specific task. In a previous work[6], the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification ad control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  • PDF

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

H Control of Time-Delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간 시연 선형 시스템의 H 제어)

  • Song, Yong-Heui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1464-1470
    • /
    • 2010
  • In this paper, we consider the $H_{\infty}$ control of time-delayed linear systems with saturating actuators. The considered time-delay is a time-varying one having bounds on magnitude and time-derivative, and the control permits the predetermined degree of saturation. Based on two modified Lyapunov-Krasovskii(L-K) functionals, we derive a $H_{\infty}$ control in the form of linear matrix inequalities(LMI) having three non-convex design parameters. The result is dependent on the characteristics of time-delay, predetermined degree of saturation level, and bound of disturbance. Finally, we give a comparative example to show the effectiveness and usefulness of our result.

Motion Estimation Considering Uncertain Time Delayed Measurements for Remote Control (원격조종을 위해 불확실한 시간 지연 측정값을 고려한 모션 추정 방법)

  • Choi, Min-Yong;Chung, Wan-Kyun;Choi, Won-Sub;Yi, Sang-Yup;Park, Jong-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.792-799
    • /
    • 2008
  • Motion estimation is crucial in a remote control for its convenience or accuracy. Time delays, however, can occur in the problem because data communication is required through a network. In this paper, state estimation problem with uncertain time delayed measurements is addressed. In dynamic system with noise, after taking measurements, it often requires some time until that is available in the filter algorithm. Standard filters not considering this time delays cannot be used since the current measurement is related with a past state. These delayed measurements are solved with augmented extended Kalman filter, and the uncertainty of delayed time is also resolved based on an explicit formulation. The proposed method is analyzed and verified by simulations.