• Title/Summary/Keyword: Time-Varying Parameter

Search Result 375, Processing Time 0.028 seconds

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Mixed $H^2/H^{\infty}$ Filter Design for Linear Parameter Varying System (선형 파라마터 변이 시스템에 대한 혼합 $H^2/H^{\infty}$ 필터 설계)

  • 이갑래;윤한오
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.73-79
    • /
    • 1997
  • This paepr is concerned with the design of linear parameter varying filter that ensures H$^{2}$/$H^{\infty}$ performance for a class of linear parameter varying(LPV) plants. The state space matrices of plant are assumed to be dependent affinely on a vector of time varying parameter, and each parameter is assumed to be measured in real time. Using the linear matrix inequalities(LMIs), we can solve the synthesis problem and the solution of LMIs is carried out off-line. The designed filter is parameter varying and automatically scheduled along parameter trajectories. Because the solution of LMIs is carried out off-line, computation time of filter gain is reduced. The validity of the proposed algorithm is verifed through computer simulation..

  • PDF

RBF Network Based QFT Parameter-Scheduling Control Design for Linear Time-Varying Systems and Its Application to a Missile Control System (시변시스템을 위한 RBF 신경망 기반의 QFT 파라미터계획 제어기법과 alt일 제어시스템에의 적용)

  • 임기홍;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.199-199
    • /
    • 2000
  • Most of linear time-varying(LTV) systems except special cases have no general solution for the dynamic equations. Thus, it is difficult to design time-varying controllers in analytic ways, and other control design approaches such as robust control have been applied to control design for uncertain LTI systems which are the approximation of LTV systems have been generally used instead. A robust control method such as quantitative feedback theory(QFT) has an advantage of guaranteeing the stability and the performance specification against plant parameter uncertainties in frozen time sense. However, if these methods are applied to the approximated linear time-invariant(LTI) plants which have large uncertainty, the designed control will be constructed in complicated forms and usually not suitable for fast dynamic performance. In this paper, as a method to enhance the fast dynamic performance, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks for LTV systems with bounded time-varying parameters.

  • PDF

Robust $H^{\infty}$ control for parameter uncertain time-varying systems with time-varying delays in state and control input (파라미터 불확실성 시변 시간지연 시스템에 대한 견실 $H^{\infty}$ 제어)

  • 김기태;김종해;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.113-116
    • /
    • 1997
  • In this paper, we present a robust $H^{\infty}$ controller design method for parameter uncertain time-varying systems with disturbance and that have time-varying delays in both state and control. It is found that the problem shares the same formulation with the $H^{\infty}$ control problem for systems without uncertainty. Through a certain differential Riccati inequality approach, a class of stabilizing continuous controller is proposed. For parameter uncertainties, disturbance and time varying delays, proposed controllers the plant and guarantee an $H^{\infty}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Finally a numerical example is given to demonstrate the validity of the results.ts.

  • PDF

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

Time-Varying Signal Parameter Estimation by Variable Fading Memory Kalman Filtering

  • Lee, Sang-Wook;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.47-52
    • /
    • 1998
  • This paper prolposes a VFM (Variable Fading Memory)Kalman filtering and applies it to the parameter estimation for time-varying signals. By adaptively calculating the fading memory, the proposed algorithm does not require any predetermined fading memory when estimating the time-varying signal parameter. Moreover, the proposed algorithm has faster convergence speed than fixed fading memory one in case the signal contains an impulsive outlier. The performance of parameter estimation for time-varying signal is evaluated by computer simulation for two cases, one of which is the chirp signal whose frequency varies linearly with time and the other is the chip signal with an impulsive outlier. The experimental results show that the VFM Kalman filtering estimates the parameter of the chirp signal more rapidly than the fixed fading memory one in the region of an outlier.

  • PDF

QFT Parameter-Scheduling Control Design for Linear Time- varying Systems Based on RBF Networks

  • Park, Jae-Weon;Yoo, Wan-Suk;Lee, Suk;Im, Ki-Hong;Park, Jin-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.484-491
    • /
    • 2003
  • For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear. time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.

New analysis of nonlinear system with time varying parameter

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.231-235
    • /
    • 1995
  • In this paper, the frozen time approach is used to analyze the nonlinear system with time varying parameter. Using the extended linearization, we propose two analytical methods that compute an upper bound of the Euclidean norm of the difference between state variable and equilibrium point of the given system. The propertise of the two methods are discussed with simple examples.

  • PDF

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.