• Title/Summary/Keyword: Time-Varying

Search Result 3,881, Processing Time 0.025 seconds

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I))

  • 이호철;최용석;최재원;송택렬;송찬호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

Mixed $H^2/H^{\infty}$ Filter Design for Linear Parameter Varying System (선형 파라마터 변이 시스템에 대한 혼합 $H^2/H^{\infty}$ 필터 설계)

  • 이갑래;윤한오
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.73-79
    • /
    • 1997
  • This paepr is concerned with the design of linear parameter varying filter that ensures H$^{2}$/$H^{\infty}$ performance for a class of linear parameter varying(LPV) plants. The state space matrices of plant are assumed to be dependent affinely on a vector of time varying parameter, and each parameter is assumed to be measured in real time. Using the linear matrix inequalities(LMIs), we can solve the synthesis problem and the solution of LMIs is carried out off-line. The designed filter is parameter varying and automatically scheduled along parameter trajectories. Because the solution of LMIs is carried out off-line, computation time of filter gain is reduced. The validity of the proposed algorithm is verifed through computer simulation..

  • PDF

Stability Conditions for Positive Time-Varying Discrete Interval System with Unstructured Uncertainty (비구조화 불확실성을 갖는 양의 시변 이산 구간 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, we consider the new stability condition for the positive time-varying linear discrete interval systems with time-varying delay and unstructured uncertainty. The delay time is considered as time-varying within certain interval having minimum and maximum values and the system is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. The proposed stability condition is an improvement of the previous results which can be applied only to time-invariant systems or had no consideration of uncertainty, and they can be expressed in the form of a very simple inequality. The stability conditions are derived using the Lyapunov stability theory and have many advantages over previous results using the upper solution bound of the Lyapunov equation. Through numerical example, the proposed stability conditions are proven to be effective and can include the existing results.

A Time-Varying Modified MMSE Detector for Multirate CDMA Signals in Fast Rayleigh Fading Channels

  • Jeong, Kil-Soo;Yokoyama, Mitsuo;Uehara, Hideyuki
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.143-152
    • /
    • 2007
  • In this paper, we propose a time-varying modified minimum mean-squared error (MMSE) detector for the detection of higher data rate signals in a multirate asynchronous code-division multiple-access (CDMA) system which is signaled in a fast Rayleigh fading channel. The interference viewed by a higher data rate symbol will be periodic due to the presence of a lower data rate symbol which spans multiple higher data rate symbols. The detection is carried out on the basis of a modified MMSE criterion which incorporates differential detection and the ratio of channel coefficients in two consecutive observation intervals inherently compensating the fast variation of the channel due to fading. The numerical results obtained by the MMSE detector with time-varying detection show around 3 dB (M=2) and 6 dB (M=4) performance improvement at a BER of $10^{-3}$ in the AWGN channel, while introducing more computational complexity than the MMSE detector without time-varying detection. At a higher $E_b/N_0$, the proposed scheme can achieve a BER of approximately $10^{-3}$ in the presence of fast channel variation which is an improvement over other schemes.

  • PDF

Independent Component Analysis Based MIMO Transceiver With Improved Performance In Time Varying Wireless Channels

  • Uddin, Zahoor;Ahmad, Ayaz;Iqbal, Muhammad;Shah, Nadir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2435-2453
    • /
    • 2015
  • Independent component analysis (ICA) is a signal processing technique used for un-mixing of the mixed recorded signals. In wireless communication, ICA is mainly used in multiple input multiple output (MIMO) systems. Most of the existing work regarding the ICA applications in MIMO systems assumed static or quasi static wireless channels. Performance of the ICA algorithms degrades in case of time varying wireless channels and is further degraded if the data block lengths are reduced to get the quasi stationarity. In this paper, we propose an ICA based MIMO transceiver that performs well in time varying wireless channels, even for smaller data blocks. Simulation is performed over quadrature amplitude modulated (QAM) signals. Results show that the proposed transceiver system outperforms the existing MIMO system utilizing the FastICA and the OBAICA algorithms in both the transceiver systems for time varying wireless channels. Performance improvement is observed for different data blocks lengths and signal to noise ratios (SNRs).

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

ASYMPTOTIC STABILITY OF LINEAR SYSTEM OF NEUTRAL TYPE WITH TIME-VARYING DELAY

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.297-303
    • /
    • 2001
  • In this paper, the problem of the stability analysis for a class of linear neutral systems with time-varying delay is investigated. Using the Lyapunov method, a delay-dependent sufficient condition for asymptotic stability of the systems in terms of linear matrix inequalities (LMIs) is presented. The LMIs can be easily solved by various convex optimization algorithms.

Improved Stability Criteria for Linear Systems with Time-varying Delay (시변 지연이 존재하는 선형시스템의 개선된 안정성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2284-2291
    • /
    • 2010
  • In this paper, improved stability criteria for linear systems with time-varying delays are proposed. By constructing a new Lyapunov functional, novel stability criteria are established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

$H_\infty$ and Time-Varying Sliding Mode Control of Underwater Vehicle (수중운동체의 $H_\infty$및 시변슬라이딩모드 제어)

  • 박철재;이만형;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.540-545
    • /
    • 1993
  • When modeling an underwater vehicle uncertainty arises in the presence of unsteady flow. It is difficult to include the uncertainty in the model and is therefore desirable to investigate robust controller design methods for the underwater vehicle. In the paper two robust control methods are applied for the underwater system. One is standard H$_{\infty}$ control and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for H$_{\infty}$ control and design parameters for time-varying switching surfaces are provided. Simulations and comparison are carried out.t.

  • PDF