• Title/Summary/Keyword: Time-Schedule Constraint

Search Result 38, Processing Time 0.028 seconds

Fine-Grain Real-Time Code Scheduling for VLIW Architecture

  • Chung, Tai M.;Hwang, Dae J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • In safety critical hard real-time systems, a timing fault may yield catastrophic results. In order to eliminate the timing faults from the fast responsive real-time control systems, it is necessary to schedule a code based on high precision timing analysis. Further, the schedulability enhancement by having multiple processors is of wide spread interest. However, although an instruction level parallel processing is quite effective to improve the schedulability of such a system, none of the real-time applications employ instruction level parallel scheduling techniques because most of the real-time scheduling models have not been designed for fine-grain execution. In this paper, we present a timing constraint model specifying high precision timing constraints, and a practical approach for constructing static schedules for a VLIW execution model. The new model and analysis can guarantee timing accuracy to within a single machine clock cycle.

  • PDF

OPTIMAL PERIOD SELECTION TO MINIMIZE THE END-TO-END RESPONSE TIME

  • SHIN M.;LEE W.;SUNWOO M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents a systematic approach which determines the optimal period to minimize performance measure subject to the schedulability constraints of a real-time control system by formulating the scheduling problem as an optimal problem. The performance measure is derived from the summation of end-to-end response times of processed I/Os scheduled by the static cyclic method. The schedulability constraint is specified in terms of allowable resource utilization. At first, a uniprocessor case is considered and then it is extended to a distributed system connected through a communication link, local-inter network, UN. This approach is applied to the design of an automotive body control system in order to validate the feasibility through a real example. By using the approach, a set of optimal periods can easily be obtained without complex and advanced methods such as branch and bound (B&B) or simulated annealing.

Implementation of Simulated Annealing for Distribution System Loss Minimum Reconfiguration (배전 계토의 손실 최소 재구성을 위한 시뮬레이티드 어닐링의 구현)

  • Jeon, Young-Jae;Choi, Seung-Kyo;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.371-378
    • /
    • 1999
  • This paper presents an efficient algorithm for loss reduction of distribution system by automatic sectionalizing switch operation in large scale distribution systems of radial type. Simulated Annealing algorithm among optimization techniques can avoid escape from local minima by accepting improvements in cost, but the use of this algorithm is also responsible for an excessive computation time requirement. To overcome this major limitation of Simulated Annealing algorithm, we may use advanced Simulated Annealing algorithm. All constaints are divided into two constraint group by using perturbation mechanism and penalty factor, so all trail solutions are feasible. The polynomial-time cooling schedule is used which is based on the statistics calculation during the search. This approaches results in saving CPU time. Numerical examples demonstrate the validity and effectiveness of the proposed methodology.

  • PDF

Dispatching Vehicles Considering Multi-lifts of Quay Cranes

  • Nguyen, Vu Duc;Kim, Kap-Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.178-194
    • /
    • 2010
  • To improve the ship operation in automated container terminals, it is important to schedule different types of handling equipment to operate synchronously. For example, a vehicle with container receiving and lifting capabilities is used to transport containers from a storage yard to a vessel and vice versa, while a triple quay crane (QC) can handle up to three 40-ft containers simultaneously. This paper discusses the manner in which vehicles should be assigned to containers to support such multi-lifts of QCs by using information about the locations and times of deliveries. A mixed-integer programming model is introduced to optimally assign delivery tasks to vehicles. This model considers the constraint imposed by the limited buffer space under each QC. A procedure for converting buffer-space constraints into time window constraints and a heuristic algorithmfor overcoming the excessive computational time required for solving the mathematical model are suggested. A numerical experiment is conducted to compare the objective values and computational times of the heuristic algorithm with those of the optimizing method to evaluate the performance of the heuristic algorithm.

Charging Schedule Establishment of PEVs considering Power System Constraints (전력계통 제약을 고려한 플러그인 전기자동차 충전계획 수립)

  • Gwon, Han Na;Kook, Kyung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.632-639
    • /
    • 2018
  • Recently, a policy has been enforced to supply Plug-in Electric Vehicles (PEVs) but this may require reinforcement of the power system depending on its clustering because PEVs are charged directly from power systems. On the other hand, as the reinforcement of power system is limited by time and budget, it is important to supply the charging demand of PEVs efficiently using the existing power systems to increase the diffusion of PEVs. This paper establishes a charging schedule for Plug-in Electric Vehicles (PEVs) considering the power system constraints. For this, the required amount and time of the charging demand for an individual PEV was modeled to integrate into power systems based on the driving pattern and charging tariff of PEV. Furthermore, the charging schedule of PEVs was established to meet the power system constraints by calculating the operating conditions of the power systems with PEVs.

Applying Static Priority Policy to Distance-Constrained Scheduling (간격제한 스케줄이에 정적 우선순위 정책의 적용)

  • Jeong, Hak-Jin;Seol, Geun-Seok;Lee, Hae-Yeong;Lee, Sang-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1333-1343
    • /
    • 1999
  • 경성 실시간 시스템의 태스크들은 논리적으로 올바른 결과를 산출해야 하지만 또한 각자의 시간 제한 조건을 만족하여야 한다. 간격제한 스케줄링은 시간 제한 조건이 시간 간격 제한으로 주어지는 실시간 태스크들을 스케줄하기 위하여 도입되었다. 간격제한 스케줄링에서의 각 태스크들은 시간 간격 제한 조건을 갖는데, 이것은 태스크의 두 연속적인 수행의 종료시간에 대해 제한을 가한다. 다시 말해, 간격제한 스케줄링에서의 각 태스크 수행은 그 태스크의 직전 수행 완료 시간으로부터 발생하는 데드라인을 갖는다. 간격제한 태스크 스케줄링에 관한 많은 연구는 단순화 방법에 기초하고 있다. 그러나, 우리는 이 논문에서 단순화 방법을 사용하지 않고, 정적 우선순위 및 정적 분리 제한 정책을 채용한 새로운 간격제한 태스크 스케줄링 방법을 제안한다. 제안된 정적 할당 방법은 스케줄링 분석 및 구현을 매우 간단히 할 수 있으며, 또한 스케줄러의 실행시간 오버헤드를 줄일 수 있다.Abstract Tasks in hard real-time systems must not only be logically correct but also meet their timing constraints. The distance-constrained scheduling has been introduced to schedule real-time tasks whose timing constraints are characterized by temporal distance constraints. Each task in the distance-constrained scheduling has a temporal distance constraint which imposes restriction on the finishing times of two consecutive executions of the task. Thus, each execution of a task in the distance-constrained scheduling has a deadline relative to the finishing time of the previous execution of the task.Much work on the distance-constrained task scheduling has been based on the reduction technique. In this paper, we propose a new scheme for the distance-constrained task scheduling which does not use the reduction technique but adopts static priority and static separation constraint assignment policy. We show that our static assignment approach can simplify the scheduling analysis and its implementation, and can also reduce the run-time overhead of the scheduler.

Co-scheduling Technique of Dataflow Applications with Shared Processor Allocation (프로세서 공유를 이용한 데이터 플로우 어플리케이션의 동시 스케줄링 기법)

  • Kang, Duseok;Kang, Shinhaeng;Yang, Hoeseok;Ha, Soonhoi
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • When multiple applications are running concurrently on a multi-processor system, interferences between applications make it difficult to guarantee real-time constraints. We propose a novel interference analysis technique that allows sharing of share processors among dataflow applications, while satisfying real-time constraints. Based on the interference analysis, we develop a co-scheduling technique that aims to minimize the resource usage. Compared to an existent technique that involves converting application graphs to real-time tasks, the proposed technique shows better results in terms of resource usage, especially when it is applied to applications with tight time constraints.

Optimal Hourly Scheduling of Community-Aggregated Electricity Consumption

  • Khodaei, Amin;Shahidehpour, Mohammad;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1251-1260
    • /
    • 2013
  • This paper presents the optimal scheduling of hourly consumption in a residential community (community, neighborhood, etc.) based on real-time electricity price. The residential community encompasses individual residential loads, communal (shared) loads, and local generation. Community-aggregated loads, which include residential and communal loads, are modeled as fixed, adjustable, shiftable, and storage loads. The objective of the optimal load scheduling problem is to minimize the community-aggregated electricity payment considering the convenience of individual residents and hourly community load characteristics. Limitations are included on the hourly utility load (defined as community-aggregated load minus the local generation) that is imported from the utility grid. Lagrangian relaxation (LR) is applied to decouple the utility constraint and provide tractable subproblems. The decomposed subproblems are formulated as mixed-integer programming (MIP) problems. The proposed model would be used by community master controllers to optimize the utility load schedule and minimize the community-aggregated electricity payment. Illustrative optimal load scheduling examples of a single resident as well as an aggregated community including 200 residents are presented to show the efficiency of the proposed method based on real-time electricity price.

A Parallel Machine Scheduling Problem with Outsourcing Options (아웃소싱을 고려한 병렬기계 일정계획 연구)

  • Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • This paper considers an integrated decision for scheduling and outsourcing(or, subcontracting) of a finite number of jobs(or, orders) in a time-sensitive make-to-order manufacturing environment. The jobs can be either processed in a parallel in-house facilities or outsourced to subcontractors. We should determine which jobs should be processed in-house and which jobs should be outsourced. And, we should determine the schedule for the jobs to be processed in-house. If a job is determined to be processed in-house, then the scheduling cost(the completion time of the Job) is imposed. Otherwise(if the job should be outsourced), then an additional outsourcing cost is imposed. The objective is to minimize the linear combination of scheduling and outsourcing costs under a budget constraint for the total available outsourcing cost. In the problem analysis, we first characterize some solution properties and then derive dynamic programming and branch-and- bound algorithms. An efficient heuristic is also developed. The performances of the proposed algorithms are evaluated through various numerical experiments.

Fuzzy-MOEH : Resource Constraints Project Scheduling Algorithm with Fuzzy Concept (Fuzzy-MOEH : 퍼지 개념을 이용한 자원제약 프로젝트 스케줄링 알고리즘)

  • Koh, Jang-Kwon;Shin, Ye-Ho;Ryu, Keun-Ho;Kim, Hong-Gi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.4
    • /
    • pp.359-371
    • /
    • 2001
  • Project scheduling under resource constraint conditions have contained to many uncertain factors and it is perfonned by human experts. The expert identifies the activities of the project, decides the precedent relationships between these activities, and then construct the schedule using expected activity's duration. At this time, most of the scheduling methods concentrate on one of scheduling factor between activity duration and cost. And the activity duration, which is the most important factor in scheduling, is decided by heuristic of expert. Therefore it may cause uncertainty of activity duration decision and the use of this activity duration may increase the uncertainty of constructed schedule. This paper proposes Fuzzy-MOEH scheduling algorithm, which is the aggregation of the fuzzy number for deciding activity duration and applies the cost function for solving the problems of previous scheduling methods. This paper also analyze the utility and property of Fuzzy-MEOH algorithm through the comparison between Fuzzy-MEOH algorithm and existing MEOH algorithm.

  • PDF