118 JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1985,

Fine-Grain Real-Time Code Scheduling for
VLIW Architecture

Tai M. Chung and Dae J. Hwang

Abstract

In safety critical hard real-time systems, a timing fault may yield catastrophic results. In order to eliminate the timing faults
from the fast responsive real-time control systems, it is necessary to schedule a code based on high precision timing analysis.
Further, the schedulability enhancement by having multiple processors is of wide spread interest. However, although an
instruction level parallel processing is quite effective to improve the schedulability of such a system, none of the real-time
applications employ instruction level parallel scheduling techniques because most of the real-time scheduling models have not

been designed for fine-grain execution.

In this paper, we present a timing constraint model specifying high precision timing constraints, and a practical approach
for constructing static schedules for a VLIW execution model. The new model and analysis can guarantee timing accuracy to

within a single machine clock cycle.

I. Introduction

For a real-time system to function correctly, the
controlling subsystem must be logically correct and free of
timing faults. A hard real-time system can fail
catastrophically if even a single operation is performed at
the wrong time. Thus, it is critical that the programming
system be able to ensure that all timing constraints will
be met no matter what events occur at runtime.

In order to meet timing constraints, control operations
are scheduled at either runtime or compile time, called
dynamic or static scheduling respectively. A dynamic
system determines the execution order at runtime; thus, it
provides flexibility in that the system can adjust its
schedule for unpredicted events, but runtime overhead
limits the precision of operation timing. This overhead
limits dynamic scheduling to relatively coarse grain tasks,
and the imprecision of dynamic scheduling for a safety
critical hard real-time system is potentially dangerous[3].
In safety critical systems, because high precision
operation timing is generally necessary, the flexibility of
dynamic scheduling should be sacrificed for safety[1]. The
fundamental motivation of our research is that hard

Manuscript received July 28, 1995; accepted October 24, 1995.
The authors are with Department of Information Engineering, Sung Kyun
Kwan University, Suwon, Korea.

real-time systems require absolute freedom from timing
faults.

While using a static schedule ensures safety, finding a
static schedule for a sequential machine is not always
feasible or even possible[5][6]. Thus, in this paper, we
focus on the general problem of finding a static schedule
for parallel computer architecture, more specifically for
VLIW(Very Long Instruction Word) computer architectures
because its synchronous behavior provides predictable
execution. Each VLIW instruction called word contains
multiple op-codes, one for each processing element within
the system[8][9], yielding a very static form of parallel
execution to obtain speed-up by efficiently using
ILP(Instruction Level Parallelism). However, this static
parallel structure can greatly increase schedulability of
control programs for real-time systems -- if static analysis
and scheduling of the real-time code is done at the
instruction level.

Thus, this paper focuses on how the language and
compiler technology can exploit instruction-level,
VLIW-style, parallelism to provide valid schedules for
VLIW architecture. The result is a static scheduling
mechanism that takes advantage of the improved
schedulability that parallelism yields, while the mechanism
also provides computational speed-up in much the same
way that VLIW systems were originally intended to
function. In fact, improved schedulability is achieved even
for coarse-grain tasks scheduled in this way, because use

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1986. 119

of ILP tends to reduce the processing time up to the
execution time of the critical path[9].

The VLIW-like scheduling techniques presented in this
paper are adapted from two well known algorithms: the
postpass scheme to reorganize a code for a pipeline
machine[11}, and the earliest deadline first algorithm for
the real-time tasks[13]. Those ideas are further developed
and modified to solve the real-time scheduling problem by
using multiple processors in a VLIW-like system
configuration.

In section 2, we describe a graphical representation of
the time constrained computatibnal model, which represents
a real-time program with high-precision timing constraints.
In section 3, the parallel execution model, code scheduling
algorithm, and performance observation are described. In
section 4, the summary and future direction of this
research is presented.

II. Timing Constraint Model

A graphical representation of a real-time program is
denoted as a Directed Timed Graph(DTG) G that consists
of a set of nodes r and a set of edges o, ie, G =
(r,6). G represents a scheduling problem to find a
partially ordered set of instructions that meets all timing
constraints as well as precedence constraints as specified
in a source program.

Let I'={(y, 7,7;-7,) be a set of nodes to be scheduled
where n is the number of nodes in G. A node is
associated with a single instruction or a group of
instructions as a schedulable unit. Further, each instruction
associated with a node is classified as an externally
viewed instruction(EVI) or an internally viewed
instruction(IVI) based on the effect of the instruction. The
effect of an IVI is limited to the internal computation,
‘while an EVI may change the status of the control
environment. _

For example, the variables defined as volatile in the C
language [17] or commands to control robots using RCCL
{12] are EVIs, and their execution must meet the timing
constraints specified in the source program. Because EVIs
may depend on values computed by IVIs, any such
dependence also implies a relative timing constraint or an
execution order which must be preserved.

Let ©={@,| k=N and 1<k<m} be a set of directed
edges where m is the number of edges in G and N is a

set of positive integers. An edge is associated with a

timing constraint that specifies the required timing
relationship between two nodes. Each directed edge in @
is a tuple of four attributes: source node 7, sink node

v,, Ielational operator 7, and timing offset 4, ie., a

timing constraint g, is defined as G,=<(r,7.2&. In
particular, a timing constraint with O offset (6=0) is
defined as a simple constraint.

In this model, the default relation of independent
constraints is' a conjunction, but an ORing constraint can
be explicitly expressed for disjunctive relations of multiple
constraints participating in the constraint. An ORing
constraint implies that meeting any one of the constraints
in ORing constraint is sufficient. An ORing constraint is
legal only when source nodes and sink nodes of the
constraints composing the constraint are matched. Thus,
one edge in G corresponds to an ORing constraint that
may consist of multiple timing constraints.

The type of required timing relationship represented by
each edge is specified by 5 and belongs to one of
following four categories: before, after, concurrent, or
exclusive constraint) Indeed, any temporal relations
between 7, and 7, can be expressed by one of these
constraints when it is allowed to specify ORing
constraints. The following statements illustrate the four
types of timing constraints.

O before constraint y<7r,+6 (y. must happen no

later than & after 7,)

O after constraint y>7s+6 (7., must happen no

sooner than ¢ after y,)
O concurrent constraint y.=7,+6 (7., must happen

exactly at & after 7,)
o exclusive constraint ye#F7,+6 (7, must NOT

happen at & after »,)

The conversion of precedence or timing constraints into
one of these types makes our scheduling analysis much
simpler by encoding the ordering constraints in terms of
the timing relationships, or by taking into account only
these forms of timing constraints. A set of precedence
constraints is a subset of simple constraints; thus, it can
be represented without introducing any additional type of
constraint. In other words, each precedence constraint of
the form "y uses 7,'s result’ can be encoded as the after

"

constraint “ y, happens no sooner than O time unit after

"

7y

Even though a DTG is very similar to a traditional
DAG(Directed Acyclic Graph), it is different in that the
edges in a DTG do not necessarily indicate precedence
relations of the source and sink instructions when ¢ is
not zero. The direction of an edge merely distinguishes
the end-points(source and sink' nodes) of a timing

constraint between them. For example, 'ye<—6> ys 1S

1) For serial machines, concurrent constraints are unsatisfiable and

exclusive constraints are trivially met.

120 HWANG AND CHUNG : FINE-GRAIN REAL-TIME CODE SCHEDULING FOR VLIW ARCHITECTURE

equivalent to 7. y,+4, implying that y, can be executed
before 7,.

Because the number of timing constraints determines the
complexity required to solve the scheduling problem, it is
interesting to find the upper bound of the number of
timing constraints in G. The upper bound of the number
of timing constraints is a function of the number of EVIs,
and fortunately less than 5% of the instructions in a
real-time program are EVIs in practice.

O EVI instructions

~=-> Timing Constraint

—— Simple Constraimt O VI instructions

Fig. 1. Graphical Representation of a Real-Time
Program.

Figure 1 depicts an example of the graphical
representation of a program. Suppose the timing offset ¢,
is a component of ¢, Let us distinguish the simple
constraints from timing constraints with non-zero offset for
convenience. The program contains eight EVI’s
(712 720 75 Y60 Y10 Y80 Y9, and 7y9), tWO IVI’S (y; and 7,), six timing
constraints (4,, 6,, 65, 6, 8;, and §), and eleven simple
constraints. Among the timing constraints, two of them
(8, and 6,) are before constraints and one (¢,) is an after
constraint. Another constraint (¢,) is an ORing constraint
that allows all the range of time except the one between
8 and 4,. The remaining constraints (4; and 4;) specify

concurrent and exclusive constraints respectively.

III. Scheduling Algorithms

1. Parallel execution model

VLIW-like does not mean VLIW. The lack of
commercial VLIW microcontrollers is only a minor
inconvenience to producing a parallel control computer
with the appropriate static timing constraints. As shown in
Figure 2, an appropriate target system can be constructed
by simply augmenting n conventional microcontrollers with
barrier synchronization hardware[7]. Given such hardware,

barrier synchronizations can be used to ensure that all the
microcontrollers maintain lock-step execution indis-
tinguishable from that obtained with a true VLIW
architecture. The hardware barrier mechanism we use in
this model is generally used for synchronization among
processors[7] and more precise timing analysis[14] to
minimize the number of synchronization points. Likewise,
a small, statically scheduled, shared memory or
communication network can provide the same functionality
as the shared register file of an ideal VLIW. It is also
simple for this connection to be used to allow all the
microcontrollers equal and essentially independent access
to the controlled devices.

The execution model supports a predictable execution
time for each operation. The operation time may not be a
fixed time, but expressed as a range such that an
execution time, r,, could be a random value between the
minimum time denoted as L(«op)), and the maximum
time denoted as H(r(op)). That is, r,=[L)) , H(z(op)))
where L(dop))<r,<H(r(op)). If a controlling subsystet.n
provides a wider range of the operation times, the
difficulty of finding a wvalid schedule increases. For
example, let .., be executed right after 7, ». It
should be guaranteed that y,, is placed either before

ZI(L(z(yj))) or after Z;:I(H(r(y,-))). However, it is not

guaranteed that y,, is not placed between those times,
said unclear ringe. The unclear range that y,, can not be
scheduled on is:

1,2;1<H(27, —L((7))

=]

‘ana’ Syncbromzanonum :

Controller

SMEM

Shared Memory

Controlled Entities

Fig. 2. An abstract parallel execution model for
real-time control.

In effect, each barrier resets accumulated range to [0,0]
in our timing analysis because the instructions following a
barrier synchronization start simultaneously, yielding a

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996, 121

relative timing difference of zero. Thus, by inserting
synchronization between every instructions, a VLIW
execution model can be simulated where the operation
time of a word equals to the maximum operation time of
all the instructions in the word.

A timed delay operation is supported as one of the
operations, say delay t implies delay for t time units. The
delay operation lets the system wait any number of ticks
needed. It is particularly used to enforce meeting after
constraints by prolonging the execution time of an
instruction sequence. For example, two consecutive
instructions, y, and y, with timing constraint y,>y,+8 can
be satisfied by inserting delay operation with delta
between y, and . In fact, two implementaion choices
can be suggested: NOPs simulating delay operation, or a
barrier mechanism in cooperation with a timer (see Figure
2). If NOPs are used to simulate a delay operation, the
granularity of the delay operation is the same as the
NOPs granularity. Another important assumption is that
the real-time system has no externally generated interrupts,
although interrupts can be accepted when timing analysis
is not affected (e.g., while a PE waits for a barrier or
executes a time delay operation). If an interrupt without
predictable interrupt latency is allowed, it is impossible to
guarantee timely behavior the system.

2. Instruction Allocation Algorithm

Even though not being realistic to have an unlimited
number of processors, it is theoretically worth to consider
the case. Thus, we first develop an instruction allocation
algorithm for unlimited number of processors (IAAUP),
and then extend it for a given number of processors.
Before proceeding, we define a few notations frequently
used in this paper.

Definition:1 Instruction slot " is defined as the i,
time slice reserved to execute an instruction on PEJk,
Processing Element). The length of w!, expressed as
{w, is the time allotted to the slice; thus, wwHzd7)
should hold to allocate y in W'

Definition:2 Word W={wf|k=1,2,-,¢} is a set of
instructions that are allocated on the i, time slice of
every processor, and the word size ¢(W) is defined as
the number of
W)= MAX *Piw)) denotes the length of W, that is
defined as the maximum length of the instruction slots in

Definition:3 Ready set R is a set of instructions that

instructions in w2 Also,

2) The word size is a constant for a given VLIW machine and
generally equivalent to the number of processors. If less
instructions than the word size are selected for allocation, the
difference is filled with NOPs..

are ready to be allocated. The instructions in R should
meet the following conditions:

© not yet allocated to any instruction slot

O not dependent on any of the unallocated instructions.

o not violating any after constraints if it is allocated
in the next available instruction slot.

The status of an instruction is classified as one of the
following three types: allocated instruction which is
already mapped into one of the instruction slots, ready
instruction which can be allocated without violating the
ready set constraint described in Definition 3, and
immature instruction which is not ready to be allocated
yet. An immature instruction either has an ancestor which
is not allocated or needs more time to run so that it can
meet an after constraint.

3. IAA for Unlimited Number of Processors

One of the most important properties of this
environment is that all instructions in the ready set can be
consumed at a time. This property makes it possible for
the scheduler to place the instructions in the ready set in
the same word. The description of the IAAUP is given in
the Figure 3:

Inputs: 7, = 7,77, and @={8,6,-,6,}

A o= W Wy W, and k= MAX(¢ (W)
or A,,=NIL and k=-1 if fails.
Procedure:

Step 1: Set variables —
i=1,R=0, and A=9Q

Output:

Step 2: Compute R;
Step 3: Vy. =R, allocate 7, toW;
by considering the following conditions
Cond 3.1: (y,€Re)/N\(y, & Re)A((7,= 7,)€ @)—neither
Cond 3.2: (y,eRe)N\y,eRe)/N\((7,= 7,) = @)—both
Cond 3.3: (7_reRe,5}\(7J.sRe,)A((yﬁbr,.)e @)—either one.
Step 4: If all instructions are allocated into A,
fill with NOPs and terminate
Step S: i =i+ 1
Step 6: Go to Step 2

Fig. 3. Algorithm description of IAAUP.

The input parameters of IAAUP are a sequence of
instructions and a set of timing constraints to be met. The
output parameters are the sequence of words to be
executed on a VLIW machine and the number of
processors needed. Initially, all the instructions are placed
in the immature set(I) and the other sets(R and A) are
initialized to empty sets. In Step 3, the ready set is

122 HWANG AND CHUNG : FINE-GRAIN REAL-TIME CODE SCHEDULING FOR VLIW ARCHITECTURE

computed to satisfy the conditions as described in
Definition 3. That is, the simple constraints and after
constraints are taken care of when the ready set is
computed.

In this algorithm, satisfying the concurrent and exclusive
constraints is a necessary condition for the instructions to
be selected. A concurrent constraint uses an all or none
policy such that if one of the instructions is allocated,
then all the instructions associated with the instruction via
the concurrent constraint are allocated in the word. For
the exclusive constraint, an only one policy is applied such
that if an instruction is allocated, any other instruction
associated with it via exclusive constraints are not
allocated in the same word. _

The conditions in Step 3 of the algorithm are given for
concurrent and exclusive constraints that are associated
with a pair of instructions. The extension to these
conditions for multiple instructions is straightforward.
Suppose Conditions 3.1 and 3.2 are considered for
extended constraints, e.g., y=r,=- =7,

If Condition 3.1 holds, none of the instructions are
allocated if exists » &R,1<i<p. In contrast, every
instruction is allocated when Condition 3.2 holds.

Condition 3.3 indicates that if we have exclusive
constraints specifying y=y= -+ =y, only one instruction
is randomly selected and allocated.

A%
W
\“
'
-

A
W

.
;
:
o
| ':;\
>
{
'~
;
:
i
"\
s
:
\

OA EVI instrustions
O Wi instructions

~--> Timing Constraint
—<¢ Simpls Constroint

Fig. 4. A graphical representation of a code segment.

One good aspect of IAAUP is that it is optimal when
the exclusive constraint is not considered, or optimally
treated. In this paper, the term optimal algorithm implies
that if there is a schedule for a code it is always found
by the algorithm. In fact, the instructions scheduled by the
IAAUP meet all the constraints specified in the code
except before constraints. Also, this algorithm is optimal if
Step 3 finds an instruction for the exclusive constraint
such that the selection leads to the minimum execution
time of the instructions between the source and sink

instructions of the before constraint associated with the
selected instruction.

The example shown in Figure 4 is ‘carefully designed to
show how the algorithm works with' various constraints.
The example contains 16 instructions: 12 EVIs and 4
IVIs, 10 timing constraints, and 17 simple constraints.
Among the constraints, the DTG contains 1 exclusive and
1 concurrent constraints. Note that the graphical
representation of a code has much more constraints and
EVIs than real control programs in order to show the
allocation process with a small example. Real control
programs should have much more IVIs and fewer timing
constraints.

Throughout this paper, we assume that each operation
takes 1 unit of time and the communication cost is
negligible to simplify the presentation. Table 1 shows how
the status of each instruction is changed from immature
state to allocated state.

Table 1. Instruction status changes in IAAUP.

time immature set ready set allocated set

o |3456789,10,12,13,14,15,16 12,11

f 34,67,89,10,13,14,15,16] 1,5,12,13 211
n 6,7,9,10(3,4.8,14,15 12,5,11,12,13
t 69,10 7,16 12,34,58,11,12,13,14,15
t 9 6,10 1,2,3,4,5,7,8,11,12,13,14,15,16
is 9 1,23,4,56,7.8,10,11,12,13,14,15,16
s 1,2,34,5,6,7,8,9,10,11,12,13,14,15,16

At 1, instruction 1 is ready but cannot be allocated
because of the concurrent constraint (instl = instS). Thus,
only instructions 2 and 11 are allocated at . Instruction
5 which will run concurrently with instruction 1 becomes
ready at #, and both instructions are allocated at ¢. In
this example, every instruction in the immature set
becomes ready . immediately, when all the parent
instructions are allocated, except instruction 6. Instruction
6 should be ready at # if we consider only simple
constraints, but the after constraint (inst6 > instl + 2) is
not yet met. Thus, instruction 6 moves to ready state at
t; instead of . The exclusive constraint between
instructions 7 and 10 (inst7 =+ inst10) is met without any
adjustment because they are naturally scheduled to run at
different times (# and). The rest of the scheduling is
straightforward, and the resulting VLIW schedule by
IAAUP is shown in Table 2.

This algorithm raises an interesting question: what is
the minimum number of processors that should be
allocated in this algorithm? Let p be the necessary
number of processors to execute the schedule. If m is
smaller than the available processors, say k, the code can
be trivially scheduled. However, it is not the usual case,

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 123

and reducing p to k or fewer processors is necessary. One
approach to reduce the required number of processors is
tuning the schedule to reorganize the instructions in the
words so that the required number of processors becomes
less than k. However, tuning is another NP-complete
problem, and the timing properties built into the schedule
can be destroyed. An alternative approach we take is
explained in the following section.

Table 2. VLIW words scheduled from the example
of code by IAAUP.

VLIW words PEy PE, PE, PE; PE,
Word 1 2 11 nop nop nop
Word 2 1 5 12 13 nop
Word 3 3 4 8 14 15
Word 4 7 16 nop nop nop
Word 5 6 10 nop nop nop
Word 6 9 nop nop nop nop

1) Limited number of processors

As described in the previous section, unlimited number
of processors make the scheduling problem simpler, but
having unlimited number of processors is impractical.
Thus, extending the IAAUP for limited number of
processors is essential. This section presents the details of
the heuristic algorithm we ~developed for k processors.
First of all, a few more notations used in the following
sections are defined.

Definition:4 An open constraint 9 is defined as a
constraint whose source instruction y(6) has been
allocated, but the sink instruction y(6) is not allocated
yet. Also, ® is defined for a set of open constraints at
any instance. Formally,

G={81 (r(O)=Aat H\(r.(OeAat HN(6<6)}

Definition:5 It is said that y, is reachable from 7y,
expressed as y. -2y, if there exists a dependence path
dyy Lo, py, iff 34,

Definition:6 D, ,=(d\,. d%,.-—.d%,} is a set of
dependence paths from vy, to y, where dependence path

d,, is defined as an ordered set of instructions on the

directed edges with zero offset (simple timing constraints)
from y, to y, in a DTG. The length of d,, is defined as
the total execution time of the instructions in d,, or zero

if vy, Formally,
Ty ity

qd,)={ "
0 otherwise

Definition:7 An emergency path o., is the d* , such
that

t(p’;.),)zz'(dlx‘y), lex‘yEDx‘y and o, ,&D,,.

The emergency path of an instruction with ORing
constraint expressed as 6,=6']6%|--| 9" takes on the
minimum length of the emergency paths from the
instruction. The length of the emergency path is either the
number of instructions of the path or the execution time
of the path depending on the scheduling policies (see the
residual based IAALP in this section). The length of the
emergency path is monotonically reduced as ORing
constraints are comprised of more subconstraints. The
emergency path p,, is expressed as:

0. = MIN(o%, p% .07

Constraint reduction: After a constraint is open by
executing an end-point of a constraint, the offset to the
open constraint diminishes as time passes. Let 4, be the
original offset of ¢,, and &) be the updated offset before
W, is executed. The updated offset of the constraint after

7

W, is executed can be expressed as:

Sut! =8~ (W)

If s, is reduced to less than zero and 8 is a before
constraint, then the algorithm fails to schedule the code.

A zero value of s, implies that the instruction on 4.,
needs to be allocated immediately to meet the before
constraint. If 6, is reduced to less than zero and 2 is an
after constraint, the associated instruction can be allocated
any time after & becomes zero.

The constraint reduction first seems very complicated,
but with a careful analysis, the complexity is reduced to a
trivial problem because In our model, constraint reduction
needs to be applied only to the constraints that are
opened by source instructions.

Computing urgency: In order to compute the urgency
of an instruction in terms of the open constraints, the
length of the emergency path between the instruction and
the sink instruction should be computed. The longest
distance between one instruction to another is computed
by Dijkstra’s shortest(or longest) path algorithm with
timing complexity O(»’) where the number of instructions
are n. Because there can be a maximum of m open
constraints at a time, the distances from each instruction
to its sink instruction can be computed in O(mx=»? time.
Then, the urgency of an instruction is defined as follows
where o, , is the distance between 7, and +,.

Definition:8 ¢!, wurgency of an instruction vy, at time t
is defined as the number of instructions that need to be

124 HWANG AND CHUNG : FINE-GRAIN REAL-TIME CODE SCHEDULING FOR VLW ARCHITECTURE

executed in unit time to meet all the open constraints
without considering the after constraints. Thus,

¢ MAX e o T(dxa)] 37) if @+0

0 otherwise

where 3! is the offset of the reduced constraint 3, and
7{8;) is the sink instruction of 6,

Selecting instructions: In IAALP, a major extension to
IAAUP is finding k instructions from R. Among the ways
of selecting the instructions, the most obvious way is to
select a random set of k instructions. This method is the
simplest, but the processors are not utilized as efficiently
as other methods that take into account timing criteria
such as urgency of each instruction, implying that the
schedulability is not as much improved as it could be.

The method we use in this section is to select %
instructions whose urgencies are the greatest. For this
decision, it is assumed that the penalty of violating each
constraint is identical, and the tie conditions are resolved
by a random selection.

As employed in IAAUP, the instructions associated with
concurrent or exclusive constraints are evaluated according
to their timing requirement. Being different from the
IAAUP, the instructions associated with a concurrent
constraint raise their urgencies to that of the one with the
highest urgency among them while the instructions
associated with an exclusive constraint ignore all the
instructions, but the one with highest urgency.

Allocating instructions : When k or fewer instructions
are selected, they are allocated in the instruction slots of
the next word. In this case, allocating those instructions
causes several side-effects. At first, the instructions in the
immature set are probed, and the instructions satisfying
the ready set requirement are moved . into R. The
instructions which have delayed for gfter constraints and
the descendants of allocated instructions are the candidates
to be moved. Secondly, if a source instruction is
allocated, the constraint associated with the instruction is
registered as an open constraint based on the constraint
reduction analysis. Thirdly, if a sink instruction is
allocated, the constraint associated with the instruction is
withdrawn from the open constraint set.

If less than k instructions are selected, the rest of the
instruction slots are filled with the appropriate number of
delay operations. In this paper, we assume that each delay
operation is a NOP operation and consumes one unit of
time.

Description of IAALP: As shown in Figure 5, this
algorithm is very similar to IAAUP except that a heuristic

algorithm is used to select k instructions based on

urgencies of the instructions in R.

Inputs: s;,=7,7, 7, C=ci. " Cms
k = Number of processors
Output: Valid schedule: s,,= W W W, or NIL if fails.
Procedure:
Step 1: Set variables —
i=] and Ri=0
Compute d,), Vr.eI, 0,0
Step 2: Compute R;
Step 3: Vy.eR; ¥= best k< instructions
by considering'the following conditions.
Cond 3.1: (y7,€Re)A(r, 2 RIN((7,= 7)€)~ neither
Cond 3.2: (y,eRe)N\7,2Re)A((7,=7,)=6)— both
Cond 3.3: (r.2Re)A(r.€Re)A((7,%7)6) — one with higher &.
4: Do constraint reduction & allocate y ¥ into W.
5: Fill nop’s if A<k
Step 6: Terminate if all instructions are allocated
Toi=i+1
8

: Go to Step 2

Fig. 5. Instruction Allocation Algorithm for Limited
Processors.

With the given input parameters, --a set of instructions,
a set of timing constraints, and the number of available
processors -- the initial computation is done before
allocating instructions. The important process in this step
is computing the distances of emergency paths from each
instruction to the sink instructions of the constraint. These
distances are used when the urgencies are computed in
Step 2.

The extension to Condition 3.1 for multiple instructions
is identical to the one for IAAUP. For Condition 3.2, the
urgencies of all instructions associated with the concurrent
constraints are set to the one with the highest urgency.
For example, say &{<éj<--<¢. The urgencies of the
instructions are set to ¢, Thus, the instructions are
allocated in an all or none fashion if enough processors
are available. If there is fewer than p processors available,
then there are two alternatives: one is to increase the
urgencies of the instructions to the maximum and the
other is not to allocate any of the instructions. For
Condition 3.3, if we have a constraint specifying
n* p+-*y, only one instruction with the highest
urgency is allocated. For example, when &i<efl<i<p, only
7, is allocated.

Selecting instructions based on residual: The previous
algorithm is based on the urgency which is computed
from the distance of(number of instructions on) the
emergency path and the remaining time of the open
constraints. This scheme is not useful when the execution
times of the instructions are very different because each

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 125

instruction Is equally weighted to compute the urgency.
For a system with widely different execution time of the
operations, using the estimated residual time is much more
effective. Residual time is the time left after all the
instructions on the critical path are executed. It is defined
as: .

Definition:9 The residual of an instruction 4., is
defined as the expected time left when d,., is executed,
ie.,

Ay y=08ry— r\émr(rx)

In this modification, IAALP selects the instructions with
minimum “residual values. Since this scheme uses the exact
execution time, it provides more accurate analysis than the
urgency based selection scheme. A negative residual value
of an instruction implies that the schedule already failed
to meet the timing constraint if it is a before constraint.

2) An example of IAALP with 3 processors

Consider an example given in Figure 4 for IAALP. The
process of IAALP is shown in Table 3 in chronological
order. Each entry of the table has two elements. The first
element is the status of the instruction indicated as I for
Immature state, R for ready state, and A for Allocated
state. The second element is the urgency which is the
number of instructions to run within unit time to meet all
the before constraints. For example, the entry for
instruction 3 denotes that it has to run at least 3
instructions for 4 units of time at in order to meet

the constraint (7,&79)A(72ﬂ>710). Note that the
urgency is valid only for the ready instructions. The
suffix to the wurgency indicates either concurrency
constraint by C or exclusive constraint by E. The
instructions 1 and 5 are concurrent instructions; hence,
instruction 1 is not allocated until ¢ when instruction 5
becomes ready.

The allocation of the instructions in IAALP is
determined by the urgency as mentioned fefore. At 1,
instruction 14 (£&,=1.0) is selected over instruction 15
(£5=0.75). In fact, if the urgency is the same as the
operation time, the instruction has to be allocated to meet
the constraints, i.e.,, a necessary condition to generate a
valid schedule is that the maximum value of urgency
should be 1 or less in our paradigm because we assume
that each operation takes one unit of time.

As shown in Table 3, when an instruction is about to
open a constraints, the urgency of the instruction is set to
zero, meaning that it is not urgent at all. The urgency,
however, can be changed to meet other -constraints
associated with the instruction. The urgency of instruction
[at ¢ is set to the urgency of instruction 5 (&£=0.75)
because instruction 1 needs to run concurrently with
instruction 5. In this example, we allocate concurrent

instructions first by raising their urgencies, if there are
more instructions with the same urgency than the number
of available processors. For the instructions associated with
exclusive constraints, only one instruction is selected based
on the urgencies of the instructions Re. If there are more
than one such instruction, a random selection is made. In
the example, instructions 7 and 8 are not in Re at the
same time; thus, it does not have any impact.

Table 3. Status of the instruction in IAALP.

1] t2) 1) ts te ted
inst] |R, 0.0C|R, 0.75C|R, 1.0C| A, - | A, - | A - | A, -
ins2 [R,000| A - | A - | A- | A- | A- | A -
ms3 | L- | L- | L- |ROTS| A - | A- | A -
instd L - L - L- [ROT5| A - | A - | A, -
inss | L~ [Ro7sciR10c] A - | A- [A- [A- |
inst6 | L- | L- | L- | L- | L- |R 066] A -
ms7 | L- | L- | L- | L- | A-] A- | A -
mst8 | L- | L- | I- |ROG6E| A - | A - | A -
ins9 | L- | L- | L- | L- | L- | L- |R 000
nst10 | L- | L- | L- | L- | L- [R 100] A -
instll (R, 000 A - | A - | A- | A- | A- | A -
mstt2 | L- IR 100| A - | A - | A - | A- | A -
instt3 | L- [R, 100] A - | A - | A- | A- | A -
insttd | L- | L- |R100] A - | A- | A- | A -
msttS | L - | L- |R 025(R,033|R 05| A - | A -
inst6 | L- | L- | L- |RO0O|R 000| A - | A -

Table 4. Scheduled words for 3 processors for the

example.

VLIW words PE, PE; PE;
Word 1 2 11 nop
Word 2 12 13 nop
Word 3 1 5 14
Word 4 3 4 8
Word 5 7 15 16
Word 6 6 10 nop
Word 6 9 nop nop

Note that the emergency distances of y, over the
remaining time to y,; and y, are 1.0 and 0.2 for the
constraints y;;<y,,+1 and (7, +5 respectively. In this
case, the maximum value of 1.0 is taken as the urgency
of 7, as stated in Definition 8.

The selection does not guarantee to lead to an optimal
solution, meaning that a valid schedule may not be found
although it exists. The quality of IAALP depends on the
strategy to select instructions in Re; thus, by replacing the

126 HWANG AND CHUNG : FINE-GRAIN REAL-TIME CODE SCHEDULING FOR VULIW ARCHITECTURE

selecting module, we can improve the quality of the
algorithm. We learned that the IAALP performs well for
reasonably complicated problems as discussed in the next
section. The resulting VLIW schedule generated by IAALP
is shown in Table 4.

4. Performance Analysis and Discussion

The scheduling time of IAA is very small; hence, it is
capable of handling large problems. Consider the IAALP
procedure in Figure 5. Step 1 requires O(mxn? time
because Dijkstra’s shortest path algorithm requires o(x2)
time and it is applied for every constraint and instruction
pair. In Step 2, computing the ready set costs a constant
amount of time. In step 3, the instructions in Re are
probed for each condition. Because the size of Re is n in
the worst case, the time complexity of Step 3 is O(x?).
The constraint reduction in Step 4 costs O(nxm) time in
the worst case when each instruction is associated with its
constraints. Thus, the computational complexity of the
IAALP is:

T = O(mxn®)+O0(n?) + A n?) + O(nx m)
= O(mx n?)

IAALP has a saturation number of processors for a
problem, meaning that the execution time is not reduced
when the number of processors used exceeds a certain
number. By increasing processors beyond this saturation
point, the processor utilization is degraded without
improving the performance at all. The processor utilization
ratio r is defined as:

_ _number of slots used
total number of slots

number of slots used
number of processors X number of words

If the execution time is not reduced, IAA does not
improve schedulability. Table 5 shows the execution
times(number of words) and the utilization ratio when
different number of processors are used. For exarmple,
when 4 PEs are used to run 80 instruction code(32
words), the processor utilization ratio is computed as:

__8
T =<3

=0.625

In the experiment, we see that the saturation point
becomes larger when there exists more parallelism in the
program. The degree of parallelism is determined how
much of dependencies are enforced. In Table 5, the
sequences of 64 and 128 instructions have larger
saturation points(5 processors) that other sequences(4
processors) because they have more parallelism than other
s

Table 5. Execution times of a schedule for k

Processors.
Code size 2 PE; 4 PEs 6 PEs 8 PEs
64 32 16 13 i3
. 80 43 32 32 32
96 51 37 37 37
112 . 62 46 46 46
128 68 48 46 46

Figure 6 depicts the processor utilization ratio r based
on the number of processors used. r is very slowly
reduced when i is less than the saturation point. Then, it
is. reduced very fast, and eventually it would be reduced
to zero, i.e. z.=0, which is the processor utilization ratio
when an infinite number of processors are used.

While developing IAA, we have learned that there is a
challenging problem: how are the instructions mapped on
multiple processors? This problem is simple when
communication cost is insignificant(e.g., shared register
system, pure VLIW) because the processor-instruction
mapping does not change any timing property. If the
communication cost is identical for every processor(e.g.,
the shared memory system), the instructions mapped into
any processor have the same timing properties unless
some of them are in registers. Only the instructions which
access data in remote PE have different timing property.

4 5 [} 7 8 e
Numbcr of proccocors

Fig. 6. Processor utilization when k processors are

used.

However, the most complex problem is the
processor-instruction mapping when communication cost is

3) we carefully built our example to have almost equivalent degree
of parallelism except sequences of 64 and 128 instructions that
are modified to have more parallelism by eliminating some simple

constraints.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1986. 127

not identical (e.g., distributed memory system). The timing
analysis for this case is beyond scope of this paper, but
very actively studied by nmany research groups

[2)[4)[15][16).

IV. Conclusion and Future Research

In this paper, we design a time-constrained model that
allows the specification of high precision timing
constraints. Unlike most real-time system models, our
model is designed for fine-grain static timing analysis.
Such a timing analysis provides accurate and robust
runtime behavior by eliminating dynamic scheduling and
dispatching overhead and by scheduling the code at
instruction level.

VLIW-like scheduling algorithm to convert graphical
representation of the model into a sequence of words is
developed based on the code reorganization algorithm for
pipeline architecture and the EDF policy for real-time
scheduling This approach is straightforward, but the
performance and complexity of the algorithm show that it
is usable for either a pure VLIW architecture or a MIMD
architecture simulating a VLIW execution model. As we
have seen in Section 3.4, this algorithm can be also used
to schedule thousands of instructions within reasonable
time. For larger problems, hierarchical decomposition
methodology has been proposed in [5]. Currently, IAALP
algorithm is implemented in CHaRTS as a module of a
real-time compiler. In CHaRTS, an intermediate
representation of a real-time code is reorganized to
generate words for VLIW machine. It shows, as discussed
in Section 3.4, that schedulability is improved by
employing more processors. Also, further development is
being made to apply IAALP algorithm for more general
execution model, assuming asymmetric communication
cost, distributed memory access, layered memory structure,
or heterogeneous architecture need to be explored. Also,
IAALP algorithm is employed in CHaRTS as a module of
a real-time compiler.

References

[1] Putting a stop to vehicles slipping and sliding.
Control Systems, page 24, July 1994.
2] J.W. Baugh and W.M. Elseaidy. Timing analysis of

a multiprocessor architecture for active control. In

Proceedings of the 11th Conference on Analysis and
Computation, pages 203 -- 212, Atlanta, GA, April
1994,

[31 Scheduling Hard Real-Time Systems: A Review.
Software Engineering Journal, 6(3):116 -- 128, May

[4]

(51

[6]

N

18]

91

(10

(11

[12]

(13]

[14}

[15]

{16]

(171

1991

LY. Choi, I.Lee, and LKang. Timing analysis of
superscalar processor programs using acsr. In Proc.
of the 11th IEEE Workshop on Real-Time Operating
Systems and Sofiware, pages 63 -- 67, Seattle, WA,
May 1994,

T.M. Chung. CHaRTS: Compiler for Hard
Real-Time Systems. PhD thesis, Purdue Unversity,
West Lafayette, IN, Aug 1995.

TM. Chung and H.G. Dietz. Language constructs
and transformation for hard real-time programs with
fine-grained timing constraints. In Proc. of ACM
SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems, pages 45 -- 53, La
Jolla, CA, June 1995.

W.E. Cohen, H. G. Dietz, and J.~B. Sponaugle.
Dynamic barrier architecture for multi-mode
fine-grain parallelism using conventional processors.
In Proc. of International Conference of Parallel
Processing, volume II, St. Charles, IL, August 1994,
JR. Elis. Bulldog : a compiler for VLIW
architectures. MIT Press, Cambridge, MA, 1986.
E.B. Fernandez and B. Bussell. Bounds on the
number of processors and time for multiprocessor
optimal schedule. JEEE Transactions on Computers,
c-22(8):745 -- 751, August 1973.

J.A. Fisher. New architecture for supercomputing. In
32nd IEEE Computer Society International
Conference, pages 177 -- 180, San Francisco, CA,
Feb 1987.

T.Gross. Code optimization of pipeline constraints.
Technical Report TR-83-255, Stanford University,
December 1983.

J.S. Lee, S. Hayati, V.Hayward, and J. E. Lloyd.
Implementation of RCCL, a Robot Control C
Library on a MicroVAX II. In Intelligent Robots
and Computer Vision, pages 472 -- 480, Cambridge,
MA, Oct 1988.

CL. Liu and J.Layland. Scheduling algorithms for
multiprocessing in a hard real-time environments,
Journal of ACM, 20(1):46 -- 61, January 1973.

M.T. O’Keefe and H. G. Dietz. Barrier MIMD
Architecture: Design and Compilation. Technical
Report TR-EE 90-50, Purdue University, West
Lafayette, Indiana, August 1990.

A.Shaw. Deterministic timing schema for parallel
programs. [EEE Computers, 24(5):56 -- 63, May
1991.

HF. Wedde, B. Korel, and D.M. Huizinga. Formal
timing analysis for distributed real-time programs.
Real-time Systems, 7(1):57 -- 90, July 1994.

ANSI X3.159. Programming Language C. American
National Standard Institute, 1989.

128

f N
// \\
;l £ L.

HWANG AND CHUNG : FINE-GRAIN REAL-TIME CODE SCHEDULING FOR VLIW ARCHITECTURE

Tai Myoung Chung received his
B.S [(Electrical Engineering) degree from
Yonsei University, Korea in 1981,
B.S.|(Computer Science) "and M.S.
(Coniputer Engineering)\ degrees from
University of Illinois, Chicago, U.S.A. in
1984 and 1987 respectively, and Ph.D.
degree from Purdue University, Indiana,

U.S.A. in 1995. Between 1985 and 1990, he worked at
Waldner and Co. and at Bolt Beranek and Newman Labs.
where he involved in Automated Network Management
project. He is currently an assistant professor of Information
Engineering department at Sung Kyun Kwan University in
Korea. His research interest includes real-time systems,
distributed systems, parallel compiler and architecture. He is a
member of IEEE and ACM.

Dae Joon Hwang received his M.S.
and PhD. degrees in computer
science from Seoul National
University, Seoul, Korea in 1981
and 1986, respectively. He has been
a professor of Information
Engineering Department at Sung
Kyun Kwan University, Korea, since
1987. His research has been much focused on
multithreaded computer architecture design, parallel
processing system, and load balancing. Now, he is
developing multimedia application crafting workbench.
DooRae in which he is trying to incoorperate the idea
from parallel processing into real-time multimedia
collaboration. Before joining the SKKU, he was an
assistant and associate professor of the Department of
Computer Science at Han Nam University, Taejon, Korea
from 1981 to 1987. From 1990 he spent a year working
with Prof. Arvind at MIT. Also, he conducted research on
multithreaded computer architecture with Dr. K.
Ekanadham, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, between November 1993 and
March 1994. He is a member of the KISS, the AACE,
the ACM and the IEEE and its several SIG’s.

