• 제목/요약/키워드: Time to Failure

검색결과 4,078건 처리시간 0.035초

성능분포에 기초한 신뢰성 인정시험 설계 (Design of Reliability Qualification Test based on Performance Distribution)

  • 권영일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2010
  • In general, the performance of a component degrades as time goes by and failure of a component occurs when the performance degradation reaches a pre-specified level. It is difficult to obtain the failure time distribution data or the necessary number of failure data especially for the metal or machine part. Thus, a design of reliability qualification test based on performance distribution is more effective than failure time distribution. In this study, a performance-based reliability qualification test is developed and a numerical example is provided to illustrate the use of the developed reliability qualification test. This approach could be applied to many kinds of metal or machine part whose magnitude of strength could not be evaluated during at any random points but judgement can be made by only failure of the part. Besides, it is also possible that any parts which have a similar failure characteristics could be applicable to the developed reliability qualification test.

FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가 (Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA)

  • 권혁무;홍성훈;이민구
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

Wavelet 변환을 이용한 과도신호의 시간-주파수 해석에 관한 연구 (A Study on the Time-Frequency Analysis of Transient Signal using Wavelet Transformation)

  • 이기영;박두환;정종원;김기현;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.219-223
    • /
    • 2002
  • Voltage and current signals during impulse tests on transformer are treated as non-stationary signals. A new method incorporating signal-processing method such as Wavelets and courier transform is proposed for failure identification. It is now possible to distinguish failure during impulse tests. The method is experimentally validated on a transformer winding. The wavelet transforms enables the detection of the time of occurrence of switching or failure events. After establishing the time of occurrence, the original waveform is split into two or more sections. The wavelet transform has ability to analysis the failure signal on time domain as well as frequency domain. Therefore, the wavelet transform is superior than courier transform to analysis the failure signal. In this paper, the fact was proved by real data which was achieved.

  • PDF

경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책 (Preventive Policy With Minor Failure Under Age and Periodic Replacement)

  • 이진표
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가 (Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model)

  • 권혁무;이민구;홍성훈
    • 한국안전학회지
    • /
    • 제33권3호
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

A modified estimating equation for a binary time varying covariate with an interval censored changing time

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제23권4호
    • /
    • pp.335-341
    • /
    • 2016
  • Interval censored failure time data often occurs in an observational study where a subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are made available. Several methods have been suggested to analyze interval censored failure time data (Sun, 2006). In this article, we are concerned with a binary time-varying covariate whose changing time is interval censored. A modified estimating equation is proposed by extending the approach suggested in the presence of a missing covariate. Based on simulation results, the proposed method shows a better performance than other simple imputation methods. ACTG 181 dataset were analyzed as a real example.

Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes through Time-Temperature Superposition

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.147-154
    • /
    • 2005
  • The creep resistance of geogrids is one of the most significant long-term safety characteristics used as the reinforcement in slopes and embankments. The failure of geogrids is defined as creep strain greater than 10%. In this study, the accelerated creep tests were applied to polyester geogrids at various loading levels of 30, 50% of the yield strengths and temperatures using newly designed test equipment. Also, the new test equipment permitted the creep testing at or above glass transition temperature($T_g$) of 75, 80, $85^{\circ}C$. The time-dependent creep behaviors were observed at various temperatures and loading levels. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. The shifting factors(AFs) were obtained using WLF equation. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results confirmed that the failure distribution of geogrids followed Weibull distribution with increasing failure rate and the lifetimes of geogrids were close to 100 years which was required service life in the field with 1.75 of reduction factor of safety. Using the newly designed equipment, the creep test of geogrids was found to be highly accelerated. Furthermore, the time-temperature superposition with the newly designed test equipment was shown to be effective in predicting the lifetimes of geogrids with shorter test times and can be applied to the other geosynthetics.

무기체계 신뢰도 예측시 임무주기 적용 방안에 대한 연구 (Methodologies of Duty Cycle Application in Weapon System Reliability Prediction)

  • 윤희성;정다운;이은학;강태원;이승헌;허만옥
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권4호
    • /
    • pp.433-445
    • /
    • 2011
  • Duty cycle is determined as the ratio of operating time to total time. Duty cycle in reliability prediction is one of the significant factors to be considered. In duty cycle application, non-operating time failure rate has been easily ignored even though the failure rate in non-operating period has not been proved to be small enough. Ignorance of non-operating time failure rate can result in over-estimated system reliability calculation. Furthermore, utilization of duty cycle in reliability prediction has not been evaluated in its effectiveness. In order to address these problems, two reliability models, such as MIL-HDBK-217F and RIAC-HDBK-217Plus, were used to analyze non-operating time failure rate. This research has proved that applying duty cycle in 217F model is not reasonable by the quantitative comparison and analysis.

ON THE MINIMAX VARIANCE ESTIMATORS OF SCALE IN TIME TO FAILURE MODELS

  • Lee, Jae-Won;Shevlyakov, Georgy-L.
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.23-31
    • /
    • 2002
  • A scale parameter is the principal parameter to be estimated, since it corresponds to one of the main reliability characteristics, namely the average time to failure. To provide robustness of scale estimators to gross errors in the data, we apply the Huber minimax approach in time to failure models of the statistical reliability theory. The minimax valiance estimator of scale is obtained in the important particular case of the exponential distribution.

암반사면 변위자료 분석 및 파괴시간 예측 소프트웨어 개발 (Development of a New Software to Analyze Displacement and Predict Failure Time of the Rock Slope)

  • 노영환;엄정기
    • 터널과지하공간
    • /
    • 제25권1호
    • /
    • pp.76-85
    • /
    • 2015
  • 본 연구에서는 암반사면에서 실시간으로 측정된 시간에 대한 변위 자료를 분석하여 암반사면의 잠재적인 파괴시간을 예측하는 소프트웨어를 개발하였다. 소프트웨어는 파괴시간을 추정하기 위한 역속도법, 로그시간-로그속도법, 로그속도-로그가속도법, 비선형최소자승법을 적용하는 네 가지 모듈로 구성되었다. 소프트웨어는 해석모듈 및 GUI의 효율적인 구현을 위하여 VisualBasic.NET 언어를 이용하여 MS Visual Studio 플랫폼에서 제작되었다. 소프트웨어의 기능 및 성능은 기존의 실내 모형사면 실험으로 얻은 변위자료를 사용하여 검토되었으며 지수형 거동을 보이는 활동면에서 실제 파괴시간과 유사한 파괴시간을 예측하였음을 확인하였다.