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ON THE MINIMAX VARIANCE ESTIMATORS
OF SCALE IN TIME TO FAILURE MODELS

JAE WoN LEE AND GEORGY L. SHEVLYAKOV

ABSTRACT. A scale parameter is the principal parameter to be es-
timated, since it corresponds to one of the main reliability charac-
teristics, namely the average time to failure. To provide robustness
of scale estimators to gross errors in the data, we apply the Huber
minimax approach in time to failure models of the statistical relia-
bility theory. The minimax variance estimator of scale is obtained
in the important particular case of the exponential distribution.

1. Introduction

This work is concerned with the application of robust minimax ap-
proach to the traditional problems of the statistical reliability theory.
Robust methods were proposed in the pioneer works of J. Tukey (1960),
P. Huber (1964), and ¥. Hampel (1968), have been intensively developed
since the seventies and rather definitely formed by present in the field of
mathematical statistics. The basic reason of investigations in this field is
of a general mathematical character. They are induced by the necessity
of study of the optimal decisions stability with respect to possible devia-
tions from the optimality assumptions. “Optimality” and “stability” are
the mutually complementary characteristics of any mathematical proce-
dure. It is well-known that the efliciency rate of many optimal decisions
is rather sensible to “small deviations” from initial assumptions.

In mathematical statistics, the remarkable example of a such unstable
optimal procedure is given by the least squares method: the efficiency
of its estimates sharply decreases under some models of deviations from
the normal distribution ([3], [4], [5]). The similar situation occurs in
estimation of a scale parameter of the exponential distribution. The
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efficient maximum likelihood estimator of the failure intensity parameter
A is the inverse value of the sample mean of the time to failure data
observations: A = 1/T, T = n~13"t;. The linear structure of the
sample mean type estimators results in their instability to the occasional
appearance of rare outliers in the data. From the statistical point of
view, this instability causes a sharp loss of the estimator efficiency under
small deviations from the accepted data distribution model which in turn
may lead to gross errors in designed reliability characteristics.

At present, there exist a lot of robust versions of various statistical
methods providing the stability of statistical inference in data analysis.
However, main results in robust statistics refer to the normal and its
neighborhood models of distributions which do not usually fit time to
failure data.

2. M-estimators of a scale parameter

Consider a sample ¢y,...,t, of i.i.d. random variables from the gross
error model

(1) FA={f:f&T)=(1-e)Tg(t/T) +eh(t), 0<e<1},

where g(-) is a given density; ¢ is a contamination parameter character-
izing the level of uncertainty of the accepted ¢(¢) density model; h(t)
is an arbitrary density; T is a scale parameter under estimation. Then
M-estimators of a scale parameter 7" are defined by Huber ([5]) as

2) ijx (t:/T0) =0,

where x is a score function. In the particuler case of the completely
known density T~1f(t/T), the score function

3) x(2) =~z f'(2)/f (2) - 1

gives the maximum likelihood estimator of scale as the solution of equa-
tion (2). Under general conditions of regularity put on the densities f
and on the score functions x ([3], pp. 125, 139~140), the estimators 7,
are consistent, asymptotically normal and asymptotically efficient, and
possess the minimax property with respect to the asymptotic variance
DT, = n_lv(X: f)

(4) VXN <V ) <V ),



On the minimax variance estimators of scale in time to failure models 25

where f* is a least informative (favorable) density minimizing the Fisher
information I(f) for scale in class (1)

® __ : —_ > 2 fl(z) 2 .
(6) fr= argminI(f),  I(f) —/0 z (f(z)) f(z)dz—1;
x* is determined from equation (3) ([4]). Condition (4) defines the
saddle-point (x*, f*) of the asymptotic variance V(x, f). The left-hand
part of inequality (4) is of a practical importance: the choice of esti-
mate (2) with the score function x* provides the guaranteed level of the
accuracy of an estimator for all densities belonging to class (1):

(6) V(X% ) SVIX" ) =1/(n I(f")).

3. Minimax variance estimators of scale in the gross error
model

The problem of the design of the minimax estimator fn comes for-
mally to variational problem (5) with the side condition of norming and
the restricted characterization of class (1)

(7) Jr= argz;ggf(f),
(8) fom f(z) dz =1,
9) f(2) =2 (1—¢) g(2).

The restricted characterization of class (1) is written down in the in-
equality form (9), apparently, it includes the non-negativeness condition.

THEOREM 1. For continuously differentiable on (0, c0) and logarith-
mic convex densities f satisfying conditions (8) and (9), the solution of
problem (7) is of the form:

Chzk for 0<z< A,
(10) )= (1—¢)g(z) for A;<z<Ag,
Cazh2 for z> A,

where the constants Cy, Ay, k1, Co, Ag, and ko are determined from
the following equations:

Cr=(1-e)g(A)(A)™, k=24 d(A1)/g(A)),
(11) Co=(1—€)g(A)(A2) ™, Ky = Ag ¢'(A9)/g(Ay),
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kl +k2 = —2,
Ay g(Ar) /Az Dog(Agy) 1
kil g, 9(2)dz = = 5T =1 ¢

Proof. First we obtain the structure of solution (9), and then prove
its optimality. By using the change of variables f(z) = ¢?(2) > 0, we
rewrite variational problem (7) with side condition (8) as

gl

2 J@=
The Lagrange functional for this problem has the form
>0 5 o0
L(g,A\) = / 229 (2)" dz + A (/ *(z) dz — 1> .
0 0

Hence the Euler equation is

229" (2) + 224/ (z) — Ag(z) = 0,

(0]
#%¢ (2)* dz — min, / g*(z) dz =1.
0

and its solutions are the extremals of problem (12)
(13) fi(2) = gi(2) = C12™,  falz) = g5(2) = Caz™, ky+hy=—2.

The structure of the optimal solution of problem (7) with side conditions
(8) and (9) is given by smooth “gluing” of free extremals (13) with
the restriction curve (1 — €)g(z) in the form (9). The parameters of
“gluing” C1, Ay, k1,C, Ay, and ke are determined from the conditions
of continuity and differentiability of the optimal solution at the points
z = Al and z = Az

FA (A1 =0) = f (A1 +0),  f7(AL—-0)=f"(A1+0),
Ff(Ag—0)=f (Ay+0),  f7(Ay—0) = f"(As+0),

which along with relation (13) and the norming condition yield system
(11). The assumption of logarithmic convexity is sufficient to provide
the existence of at most two points of intersection of free extremals with
the restriction curve.

It is known ([4], p.82 and Subsection 5.6) that the density f*
belonging to the convex class JF minimizes the Fisher information if
and only if

(14 1] =
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where f; = (1—s)f*+sf,and f isan arbitrary density with I(f) < cc.
Inequality (14) can be rewritten as

(15) /0 (2o (2) = X)) (F(2) — £1(2)) dz > 0,

where x*(z) is the optimal score function [4]. By evaluating the left-
hand part of (15), it can be shown that it is equivalent to the character-
ization restriction of the variational problem,

Fz)—(1—¢)g(2) 20

and this remark concludes the proof. O

The robust minimax variance estimator Tn evaluated from equation
(2) is completely determined by the following score function;

fx(2)
-k — 1, 0<z<Ay,
= —24'(2)/9(z) =1, Ar<z< Ay,
—ko — 1, z > Ag.

Consider the following notations:
I, = {Z : ti/fn < Al}s I = {’L : ti/fn > AQ}, I= {’l. Ay < tz'/rfn < Az}

Then equation (2) can be written as

) D (k1) +Z( ¢/ T) 1)4—2(—1@2—1):0.

i€l el (t /T ) i€l

Denoting the numbers of observations belonging to the sets I1, Is and
I as ny, ny and n — ny — na, respectively, we get from (17) that the
structure of the robust minimax estimator with score function (16) is
the structure of the trimmed maximum likelihood estimator with the
ni-deleted smallest and ns-greatest observations, the rest of the sample
being processed by the maximum likelihood method. In the limit case
as € — 1, this estimator is the sample median

o~ 1 n=2h+1
18 T, =med t = (ht1)> ’
(18) n { (try + tne1))/2, n = 2h.

With £ = 0, the robust minimax variance estimator fn is the maximum
likelihood estimator for a scale parameter of the density g(t).
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REMARK 1. The obtained results can be used for designing robust
minimax estimators of scale for the Gamma, Weibull and exponential
distributions, the first two with given parameters of form. The impor-
tant case of the exponential distribution is analyzed below.

4. Example: robust minimax variance estimator of scale for
the exponential distribution

THEOREM 2. For continuously differentiable on (0, c0) densities f(z)
satisfying conditions (8) and (9) with g(z) = exp(—z), the solution of
problem (7) is of the form: with 0 < e <eg = (1+ ez)"l,

| =g)e™® for 0<z<A,
(19) Fil2) = { C z* for z> A,
where the constants C,k and A are the functions of the parameter £
-A

2 S (1—g)e Bl k=-A, S ___-_°%
(20)  C=(@-ae iR et
witheg <e <1

Cy 2k for 0 <z <Ay,
(21) ff(2)=q (L—g)e™® for Aj<z< Ay,

Chz*> for z > As,

where the constants C1, Ay, k1, Cs, Ay, and ko are determined from the
following system:

Ci=Q1—-ge ™1 -0 Aj=1-6 k=-1+4,
(22)  Co=(1—e)e (140, Ay=1+46, ky=-1-3,
e+ e 9 1

ed 1—¢

Proof. Applying the assertion of Theorem 1 to the exponential distri-
bution, we can easily obtain the statement. O

In formula (22), the auxiliary parameter § (0 < § < 1) is introduced.
The expressions for the Fisher information have the following forms for
solutions (19) and (21), respectively:

I(f*) =1—eA?% I(f*) =25 tanh(5) — §°.

With small values of £, the least favorable density f* in (19) corresponds
to the exponential distribution in the zone 0 < z < A; in the “tail”
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zone, it is similar to the one-sided t-distribution. With large values of
¢, the rather whimsical distribution minimizing the Fisher information
appears—its density tends to infinity at z = 0. The border between
these solutions is characterized by the following values of the parameters:
Ay =0, Ay =2, ¢ =0.119. Some numerical results are represented in
Table 1. The values of the distribution function

F*(s) = / ot

evaluated at the points of “gluing” of the extremals C;z* and Cy 2k
with the restriction curve (1 — &)e™* are also given in Table 1. The
asymptotically efficient estimator Tn, evaluated from equation (2), has
the following score function

(Y Ar~1, 0<zgAy,
@) x@=—LE LT Acz< i,

Formula (23) is valid for the both solutions (19) and (21): solution (21)
comes to solution (19) with A; = 0. With the notations introduced in
Section 3, we obtain from (2) and (23)

(24) Z(A1ﬂ1)+z(%—1)+2(ag—1)=o

i€ly el Min i€l
and
-~ 1

25 I, = ti-

( ) " n—nlAl—ngAg ; :
Estimator (25) is similar to the trimmed mean

1 n—TL2

26 Tn(ny, ng) = i),
( ) n( ! 2) n — nlAl - nzAQ i:nzl—i—l (@

where t(;) is an i-th order statistic. If the numbers of the trimmed order
statistics (the smallest and greatest) are chosen as

n1 = [F*(A1)n], ng2 = [(1—F*(Az2))n],

where [ -] stands for the integer part of a number in the blank, then the
estimators 7}, obtained from equation (17) and fn(nl, ny) are asymptot-
ically equivalent as M- and L-estimators of scale ([4]). Hence the simple
estimator T, (n1, ngy) is recommended for the practical use.
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£ Al AQ F*(Al) F*(Ag) 1/I(f*)

0 0 o0 0 1 1
0.001 0 5.42 0 0.995 1.03
0.002 0 4.86 0 0.990 1.05
0.005 0 4.15 0 0.979 1.09
0.01 0 3.63 0 0.964 1.15
0.02 0 3.13 0 0.937 1.24
0.05 0 2.52 0 0.874 1.47
0.1 0 2.10 0 0.790 1.79
g0 = (1+e?)1=0.119 0 2 0 0.762 1.91
0.15 0.110 | 1.890 | 0.094 0.727 2.11
0.20 0.226 | 1.774 | 0.187 0.689 2.46
0.25 0.313 | 1.687 | 0.249 0.659 2.88
0.30 0.384 ; 1.616 | 0.297 0.635 3.38
0.40 0.503 | 1.497 | 0.367 0.596 4.76
0.50 0.603 | 1.397 | 0.415 0.565 7.03
0.65 0.733 | 1.267 | 0.462 0.532 14.7
0.80 0.851 | 1.149 | 0.462 0.510 45.8

1 1 1 0.5 0.5 o0

TABLE 1. s-contaminated exponential distributions min-

imizing the Fisher information for a scale parameter

The structure of the least informative density and the corresponding
structure of the score function show that, for small values of the con-
tamination parameter g, the optimal algorithm provides the one-side
sample trimming with subsequent averaging of the remained sample el-
ements. For large values of &, the two-side trimming of the smallest and
greatest observations is realized.

The practical recommendations for the use of the designed robust esti-
mator are defined by the restrictions of model (1) and within the frames
of this model by the value of the contamination parameter €. The results
of investigations in various areas of technical and engineering applica-
tions of statistical methods show the good fit of the contamination model
to the real-life data [3]. The estimated and expected values of £ usually
lie in the interval (0.001,0.1). If there is no any prior information about
the value of ¢ then one may take it equal to 0.1. In this case, according
to the results represented in Table 1 (see its eighth row), the optimal
estimator is the one-sided trimmed mean at the level 21%. The deletion
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of the 21% of the greatest time to failure values and averaging of the rest
of them gives perhaps not very optimistic but the guaranteed reliable
value of the mean time to failure characteristic.

REMARK 2. It is easy to see that in the gross error model (1) with
the arbitrary small ¢ and the Cauchy-type density h(t), the use of the
classical sample mean estimator T leads to infinite losses in efficiency as
compared with the use of the obtained robust estimators.
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