• 제목/요약/키워드: Time series Data

검색결과 3,697건 처리시간 0.039초

Research on data augmentation algorithm for time series based on deep learning

  • Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1530-1544
    • /
    • 2023
  • Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.

Chaotic Forecast of Time-Series Data Using Inverse Wavelet Transform

  • Matsumoto, Yoshiyuki;Yabuuchi, Yoshiyuki;Watada, Junzo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.338-341
    • /
    • 2003
  • Recently, the chaotic method is employed to forecast a near future of uncertain phenomena. This method makes it possible by restructuring an attractor of given time-series data in multi-dimensional space through Takens' embedding theory. However, many economical time-series data are not sufficiently chaotic. In other words, it is hard to forecast the future trend of such economical data on the basis of chaotic theory. In this paper, time-series data are divided into wave components using wavelet transform. It is shown that some divided components of time-series data show much more chaotic in the sense of correlation dimension than the original time-series data. The highly chaotic nature of the divided component enables us to precisely forecast the value or the movement of the time-series data in near future. The up and down movement of TOPICS value is shown so highly predicted by this method as 70%.

  • PDF

Comparison of prediction methods for Nonlinear Time series data with Intervention1)

  • Lee, Sung-Duck;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.265-274
    • /
    • 2003
  • Time series data are influenced by the external events such as holiday, strike, oil shock, and political change, so the external events cause a sudden change to the time series data. We regard the observation as outlier that occurred as a result of external events. In general, it is called intervention if we know the period and the reason of external events, and it makes an analyst difficult to establish a time series model. Therefore, it is important that we analyze the styles and effects of intervention. In this paper, we considered the linear time series model with invention and compared with nonlinear time series models such as ARCH, GARCH model and also we compared with the combination prediction method that Tong(1990) introduced. In the practical case study, we compared prediction power with RMSE among linear, nonlinear time series model with intervention and combination prediction method.

  • PDF

서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용 (Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics)

  • 황지수;문재원
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.872-884
    • /
    • 2022
  • IoT 산업 발전으로 다양한 산업군에서 서로 다른 형태의 시계열 데이터를 생성하고 있으며 이를 다시 통합하여 재생산 및 활용하는 연구로 진화하고 있다. 더불어, 실제 산업에서 데이터 처리 속도 및 활용 시스템의 이슈 등으로 인해 시계열 데이터 활용 시 데이터의 크기를 압축하여 통합 활용하는 경향이 증가하고 있다. 그러나 시계열 데이터의 통합 가이드라인이 명확하지 않고 데이터 기술 시간 간격, 시간 구간 등 각각의 특성이 달라 일괄 통합하여 활용하기 어렵다. 본 논문에서는 통합 기준 설정 방법과 시계열 데이터의 통합시 발생하는 문제점을 기반으로 두 가지의 통합 방법을 제시하였다. 이를 기반으로 시계열 데이터의 특성을 고려한 이질적 시계열 데이터 통합 프레임워크를 구성하였으며 압축된 서로 다른 이질적 시계열 데이터의 통합과 다양한 기계 학습에 활용할 수 있음을 확인하였다.

카오스 특징 추출에 의한 시계열 신호의 패턴인식 (Pattern recognition of time series data based on the chaotic feature extracrtion)

  • 이호섭;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.294-297
    • /
    • 1996
  • This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.

  • PDF

연속된 데이터의 퍼지학습에 의한 비정상 시계열 예측 (Predicting Nonstationary Time Series with Fuzzy Learning Based on Consecutive Data)

  • 김인택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권5호
    • /
    • pp.233-240
    • /
    • 2001
  • This paper presents a time series prediction method using a fuzzy rule-based system. Extracting fuzzy rules by performing a simple one-pass operation on the training data is quite attractive because it is easy to understand, verify, and extend. The simplest method is probably to relate an estimate, x(n+k), with past data such as x(n), x(n-1), ..x(n-m), where k and m are prefixed positive integers. The relation is represented by fuzzy if-then rules, where the past data stand for premise part and the predicted value for consequence part. However, a serious problem of the method is that it cannot handle nonstationary data whose long-term mean is varying. To cope with this, a new training method is proposed, which utilizes the difference of consecutive data in a time series. In this paper, typical previous works relating time series prediction are briefly surveyed and a new method is proposed to overcome the difficulty of prediction nonstationary data. Finally, computer simulations are illustrated to show the improved results for various time series.

  • PDF

매트릭스 프로파일을 이용한 제조 시계열 데이터 패턴 추출 (Pattern Extraction of Manufacturing Time Series Data Using Matrix Profile)

  • 김태현;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.210-212
    • /
    • 2022
  • 제조업에서 생산 설비의 상태를 모니터링하기 위해 각종 센서를 부착하고 있으며, 이를 통해 획득된 데이터의 경우 시계열 데이터인 경우가 많다. 생산 설비의 이상 여부를 판단하기 위해서는시계열 데이터로부터 패턴을 추출하는 과정이 선행되어야 하며 다양한 방법이 연구되고 있다. 본 논문에서는 수집된 다변량 시계열 데이터로부터 패턴을 추출하기 위해 매트릭스 프로파일 알고리즘을 적용하였으며, 이를 통해 현재 CNC 머신으로부터 수집 중인 다중 센서 데이터의 패턴을 추출하였다.

  • PDF

Issues Related to the Use of Time Series in Model Building and Analysis: Review Article

  • Wei, William W.S.
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.209-222
    • /
    • 2015
  • Time series are used in many studies for model building and analysis. We must be very careful to understand the kind of time series data used in the analysis. In this review article, we will begin with some issues related to the use of aggregate and systematic sampling time series. Since several time series are often used in a study of the relationship of variables, we will also consider vector time series modeling and analysis. Although the basic procedures of model building between univariate time series and vector time series are the same, there are some important phenomena which are unique to vector time series. Therefore, we will also discuss some issues related to vector time models. Understanding these issues is important when we use time series data in modeling and analysis, regardless of whether it is a univariate or multivariate time series.

Forecasting Symbolic Candle Chart-Valued Time Series

  • Park, Heewon;Sakaori, Fumitake
    • Communications for Statistical Applications and Methods
    • /
    • 제21권6호
    • /
    • pp.471-486
    • /
    • 2014
  • This study introduces a new type of symbolic data, a candle chart-valued time series. We aggregate four stock indices (i.e., open, close, highest and lowest) as a one data point to summarize a huge amount of data. In other words, we consider a candle chart, which is constructed by open, close, highest and lowest stock indices, as a type of symbolic data for a long period. The proposed candle chart-valued time series effectively summarize and visualize a huge data set of stock indices to easily understand a change in stock indices. We also propose novel approaches for the candle chart-valued time series modeling based on a combination of two midpoints and two half ranges between the highest and the lowest indices, and between the open and the close indices. Furthermore, we propose three types of sum of square for estimation of the candle chart valued-time series model. The proposed methods take into account of information from not only ordinary data, but also from interval of object, and thus can effectively perform for time series modeling (e.g., forecasting future stock index). To evaluate the proposed methods, we describe real data analysis consisting of the stock market indices of five major Asian countries'. We can see thorough the results that the proposed approaches outperform for forecasting future stock indices compared with classical data analysis.

신경망을 이용한 시계열의 분해분석 (Decomposition Analysis of Time Series Using Neural Networks)

  • 지원철
    • 대한산업공학회지
    • /
    • 제25권1호
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF