• Title/Summary/Keyword: Time predictability

Search Result 219, Processing Time 0.031 seconds

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

Evaluation of Short-Term Prediction Skill of East Asian Summer Atmospheric Rivers (동아시아 여름철 대기의 강 단기 예측성 검증)

  • Hyein Kim;Yeeun Kwon;Seung-Yoon Back;Jaeyoung Hwang;Seok-Woo Son;HyangSuk Park;Eun-Jeong Cha
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.83-95
    • /
    • 2024
  • Atmospheric rivers (ARs) are closely related to local precipitation which can be both beneficial and destructive. Although several studies have evaluated their predictability, there is a lack of studies on East Asian ARs. This study evaluates the prediction skill of East Asian ARs in the Korean Integrated Model (KIM) for 2020~2022 summer. The spatial distribution of AR frequency in KIM is qualitatively similar to the observation but overestimated. In particular, the model errors greatly increase along the boundary of the western North Pacific subtropical high as the forecast lead time increases. When the prediction skills are quantitatively verified by computing the Anomaly Correlation Coefficient and Mean Square Skill Score, the useful prediction skill of daily AR around the Korean Peninsula is found up to 5 days. Such prediction limit is primarily set by the wind field errors with a minor contribution of moisture distribution errors. This result suggests that the improved prediction of atmospheric circulation field can improve the prediction of East Asian summer ARs and the associated precipitation.

COMPUTER GAME PLAYING PATTERNS AND PSYCHOPATHOLOGY IN SCHOOL-AGE CHILDREN (학령기 아동의 컴퓨터게임 이용 양상과 정신병리)

  • Lim Seoung-Hu;Jeong Seoung-Shim;Park Jeone-Hwan;Kim Ji-Hae;Hong Sung-Do
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Objectives : The object of this study was to examine computer game playing patterns and psychopathologies related to computer game addiction in school-age children. Methods : The subjects were 533 elementary school students (4th to 6th grade) in Kangdonggu, Seoul. We evaluated computer playing patterns of all subjects using computer game playing pattern questionnaire, and determined the risk group of computer game addiction by internet game addiction scale score. We evaluated subscale score of K-CBCL from parents of all subjects, and conducted correlation analysis and logistic regression analysis between computer game addiction and subscale score of K-CBCL. Results : In 488 responders, 10.2% of started playing computer game in preschool age, and 67.2% started at low grade of elementary school. The mean frequency of computer game play per week was 3.66 days. Mean time spent playing computer games per day was 1.89 hours. 'Simply for fun' was the most common reason far playing computer games (40.8%). Male subjects showed statistically significant differences in age of starting computer game, frequency of computer game play per week, reasons for playing computer game and computer game addiction scale scores. There were significant correlations between computer game addiction scale scores and academic performance, somatic complaints, attention problems, and internalizing problems in K-CBCL. But In logistic regression analysis, only attention problems among K-CBCL subscales showed significant predictability to computer game addiction. Conclusion : Upper grade elementary school students experienced computer game playing at the very early age, and spend much time in playing computer games. There were significant correlation and predictability between computer game addiction and attention problems.

  • PDF

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

An Active Queue Management Method Based on the Input Traffic Rate Prediction for Internet Congestion Avoidance (인터넷 혼잡 예방을 위한 입력율 예측 기반 동적 큐 관리 기법)

  • Park, Jae-Sung;Yoon, Hyun-Goo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.41-48
    • /
    • 2006
  • In this paper, we propose a new active queue management (AQM) scheme by utilizing the predictability of the Internet traffic. The proposed scheme predicts future traffic input rate by using the auto-regressive (AR) time series model and determines the future congestion level by comparing the predicted input rate with the service rate. If the congestion is expected, the packet drop probability is dynamically adjusted to avoid the anticipated congestion level. Unlike the previous AQM schemes which use the queue length variation as the congestion measure, the proposed scheme uses the variation of the traffic input rate as the congestion measure. By predicting the network congestion level, the proposed scheme can adapt more rapidly to the changing network condition and stabilize the average queue length and its variation even if the traffic input level varies widely. Through ns-2 simulation study in varying network environments, we compare the performance among RED, Adaptive RED (ARED), REM, Predicted AQM (PAQM) and the proposed scheme in terms of average queue length and packet drop rate, and show that the proposed scheme is more adaptive to the varying network conditions and has shorter response time.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Electricity Consumption as an Indicator of Real Economic Status (전력소비를 이용한 실물경기지수 개발에 관한 연구)

  • Oh, Seung-Hwan;Kim, Tea-Joong;Kwak, Dong-Chul
    • Journal of Distribution Science
    • /
    • v.14 no.3
    • /
    • pp.63-71
    • /
    • 2016
  • Purpose - A variety of indicators are used for the diagnosis of economic situation. However, most indicators explain the past economic situation because of the time difference between the measurement and announcement. This study aims to argue for the resurrection of an idea: electricity demand can be used as an indicator of economic activity. In addition, this study made an endeavor to develop a new Real Business Index(RBI) which could quickly represent the real economic condition based on the sales statistics of industrial and public electricity. Research design, data, and methodology - In this study monthly sales of industrial and public electricity from 2000 to 2015 was investigated to analyze the relationship between the economic condition and the amount of electricity consumption and to develop a new Real Business Index. To formulate the Index, this study followed next three steps. First, we decided the explanatory variables, period, and collected data. Second, after calculating the monthly changes for each variable, standardization and estimating the weighted value were conducted. Third, the computation of RBI finalized the development of empirical model. The principal component analysis was used to evaluate the weighted contribution ratio among 3 sectors and 17 data. Hodrick-Prescott filter analysis was used to verify the robustness of out model. Results - The empirical results are as follows. First, compatibility of the predictability between the new RBI and the existing monthly cycle of coincident composite index was extremely high. Second, two indexes had a high correlation of 0.7156. In addition, Hodrick-Prescott filter analysis demonstrated that two indexed also had accompany relationship. Third, when the changes of two indexes were compared, they were found that the times when the highest and the lowest point happened were similar, which suggested that it is possible to use the new RBI index as a complementing indicator in a sense that the RBI can explain the economic condition almost in real time. Conclusion - A new economic index which can explain the economic condition needs to be developed well and rapidly in a sense that it is useful to determine accurately the current economic condition to establish economic policy and corporate strategy. The salse of electricity has a close relationship with economic conditions because electricity is utilized as a main resource of industrial production. Furthermore, the result of the sales of electricity can be gathered almost in real time. This study applied the econometrics model to the statistics of the sales of industrial and public electricity. In conclusion, the new RBI index was highly related with the existing monthly economic indexes. In addition, the comparison between the RBI index and other indexes demonstrated that the direction of the economic change and the times when the highest and lowest points had happened were almost the same. Therefore, this RBI index can become the supplementary indicator of the official indicators published by Korean Bank or the statistics Korea.

A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments (인공신경망을 이용한 기상관측장비 결측 보완 기술에 관한 연구)

  • Min, Jae-Sik;Lee, Moo-Hun;Jee, Joon-Bum;Jang, Min
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.245-252
    • /
    • 2016
  • The purpose of this study is to make up for missing of weather informations from ASOS and AWS using artificial neural networks. We collected temperature, relative humidity and wind velocity for August during 5-yr (2011-2015) and sample designed artificial neural networks, assuming the Seoul weather station was missing. The result of sensitivity study on number of epoch shows that early stopping appeared at 2,000 epochs. Correlation between observation and prediction was higher than 0.6, especially temperature and humidity was higher than 0.9, 0.8 respectively. RMSE decreased gradually and training time increased exponentially with respect to increase of number of epochs. The predictability at 40 epoch was more than 80% effect on of improved results by the time the early stopping. It is expected to make it possible to use more detailed weather information via the rapid missing complemented by quick learning time within 2 seconds.

Comparative Usefulness of Naver and Google Search Information in Predictive Models for Youth Unemployment Rate in Korea (한국 청년실업률 예측 모형에서 네이버와 구글 검색 정보의 유용성 분석)

  • Jung, Jae Un
    • Journal of Digital Convergence
    • /
    • v.16 no.8
    • /
    • pp.169-179
    • /
    • 2018
  • Recently, web search query information has been applied in advanced predictive model research. Google dominates the global web search market in the Korean market; however, Naver possesses a dominant market share. Based on this characteristic, this study intends to compare the utility of the Korean web search query information of Google and Naver using predictive models. Therefore, this study develops three time-series predictive models to estimate the youth unemployment rate in Korea using the ARIMA model. Model 1 only used the youth unemployment rate in Korea, whereas Models 2 and 3 added the Korean web search query information of Naver and Google, respectively, to Model 1. Compared to the predictability of the models during the training period, Models 2 and 3 showed better fit compared with Model 1. Models 2 and 3 correlated different query information. During predictive periods 1 (continuous with the training period) and 2 (discontinuous with the training period), Model 3 showed the best performance. During predictive period 2, only Model 3 exhibited a significant prediction result. This comparative study contributes to a general understanding of the usefulness of Korean web query information using the Naver and Google search engines.