DOI QR코드

DOI QR Code

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector

집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구

  • 성동훈 (연세대학교 이과대학 지구시스템과학과) ;
  • 이용문 (연세대학교 이과대학 지구시스템과학과) ;
  • 이용재 (연세대학교 이과대학 지구시스템과학과)
  • Received : 2012.03.26
  • Accepted : 2012.04.23
  • Published : 2012.04.28

Abstract

The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

최근 개발된 상용 X-선원들은 기존 선원들에 비하여 비약적으로 증가된 휘도와 집속율을 보임으로써 다양한 형태의 연구실 규모의 분말회절 분석을 가능하게 하고 있다. 더욱이, 개선된 소프트웨어 및 시료환경 장치와 더불어 2차원 검출기의 성능향상은 다양한 온도, 압력하에서의 상전이 현상 및 이온교환 반응과 같은 새로운 형태의 실시간 및 시간분해 회절실험을 가능하게 하고 있다. 본 논문에서는 (1) 나트로라이트의 이온교환 특성에 관한 실시간 측정, (2) 이온교환된 나트로라이트의 탈수 및 열팽창 특성에 관한 실시간 측정, (3) 이온교환된 나트로라이트의 정수압(靜水壓) 하에서의 상전이 현상의 관찰 등의 내용을 소개하고자 한다. 측정된 회절자료의 양과 품질은 각 반응의 진행경로를 확인할 수 있게 하고 선택된 자료의 리트벨트 분석을 통해 구조해석까지 가능케 한다. 이와 같은 형태의 개별 연구실 기반 실시간 회절분석 연구는 추후 연관되어 수행될 방사광가속기를 이용한 보다 특화된 실험에 대한 사전 예측성을 더욱 증가시킬 것으로 사료된다.

Keywords

References

  1. (2010a) Direct Drive Type Rotor Target (FXRT) Instruction Manual, Manual No. ME14003C01. Rigaku Corporation, Tokyo.
  2. (2010b) R-AXIS IV++ CE MARKING SYSTEM Instruction Manual, Manual No. ME11526A06. Rigaku Corporation, Tokyo.
  3. (2010c) Ra-Micro7 HFM Tabletop Rotating Anode X-Ray Generator Instruction Manual, Manual No. ME14057A04. Rigaku Corporation, Tokyo.
  4. Artioli, G. (1997) In situ powder diffraction studies of temperature induced transformations in minerals. Nucl. Instrum. Methods Phys. Res., Sect. B, 133(1-4), 45-49. https://doi.org/10.1016/S0168-583X(97)00544-2
  5. Artioli, G., Smith, J.V. and Pluth, J.J. (1986) X-ray structure refinement of mesolite. Acta Cryst., C42, 937-942.
  6. Artioli, G., Stahl, K. and Hanson, J.C. (1996) The dehydration process in the natural zeolite laumontite: A real-time synchrotron x-ray powder diffraction study. Mater. Sci. Forum, 228-231, 369.
  7. Baur, W.H. and Joswig, W. (1996) The phases of natrolite occuring during dehydration and rehydration studied by single crystal x-ray diffraction methods between room temperature and 923K. N. Jb. Miner. Mh., 171-187.
  8. Baur, W.H., Kassner, D., Kim, C.-H. and Sieber, N.H. (1990) Flexibility and distortion of the framework of natrolite: crystal structures of ion-exchanged natrolites. Eur. J. Mineral., 2, 761-769. https://doi.org/10.1127/ejm/2/6/0761
  9. Bell, P.M. and Mao, H.K. (1979) Absolute pressure measurements and their comparison with the ruby fluorescence (R1) pressure scale to 1.5 Mbar. Carnegie Inst. Washington Year Book, 78, p.665-669.
  10. Christensen, A.N., Norby, P. and Hanson, J.C. (1995) Chemical reaction in the system MgO-MgCl2-H2O followed by time-resolved synchrotron x-ray powder diffraction. J. Solid State Chem., 114, 556-559. https://doi.org/10.1006/jssc.1995.1085
  11. Christensen, A.N.l., Jensen, T.R., Norby, P. and Hanson, J.C. (1998) In situ Synchrotron X-ray powder diffraction studies of Crystallization of microporous aluminophosphates and $Me^{2+}$-substituted aluminophosphates. Chem. Mater., 10, 1688-1693. https://doi.org/10.1021/cm980049s
  12. Coppens, P. (1992) Synchrotron Radiation Crystallography. Academic Press, London.
  13. Dyer, A. and Faghihian, H. (1998) Diffusion in heteroionic zeolites: part 1. Diffusion of water in heteroionic natrolites. Microporous Mesoporous Mater., 21, 27-38. https://doi.org/10.1016/S1387-1811(97)00035-8
  14. Fang, Z.H. (2005) Temperature dependence of volume thermal expansion for NaCl and KCl crystals. Physica B-Condensed Matter, 357(3-4), 433-438. https://doi.org/10.1016/j.physb.2004.12.010
  15. Finger, L.W. (1989) Synchrotron Powder Diffraction. In D.L. Bish, and J.E. Post, Eds. Modern Powder Diffraction, 20, p. 309-332. Mineralogical Society of America, Washinton, DC.
  16. Hammersley, A.P. (1998) FIT2D: V9.129 Reference Manual V3.1.
  17. Harford, J. and Squire, J. (1997) Time-resolved diffraction studies of muscle using synchrotron radiation. Reports On Progress in Physics, 60(12), 1723-1787. https://doi.org/10.1088/0034-4885/60/12/005
  18. Klaproth, M.H. (1803) XV Ges. Naturforsch. Freunde. Berlin N. Schr., 4.
  19. Klug, H.P. and Alexander, L.E. (1974) X-ray diffraction procedures for polycrystalline and amorphous materials; 2nd. edition. 716p. Wiley Interscience, New York.
  20. Kvick, A., Stahl, K. and Smith, J.V. (1985) A neutron diffraction study of the bonding of zeolitic water in scolecite at 20K. Z. Kristallogr., 171, 141-154. https://doi.org/10.1524/zkri.1985.171.1-2.141
  21. Lee, Y., Hriljac, J.A., Vogt, T., Parise, J.B. and Artioli, G. (2001) First Structural Investigation of a Superhydrated Zeolite. J. Am. Chem. Soc., 123, 12732-12733. https://doi.org/10.1021/ja017098h
  22. Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B. and Artioli, G. (2002a) Pressure-Induced Volume Expansion of Zeolites in the Natrolite family. J. Am. Chem. Soc., 124, 5466-5475. https://doi.org/10.1021/ja0255960
  23. Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B., Hanson, J.C. and Kim, S.J. (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420, 485-489. https://doi.org/10.1038/nature01265
  24. Lee, Y., Hriljac, J.A., Parise, J.B. and Vogt, T. (2005) Pressure- induced stabilization of ordered paranatrolite: A new insight into the paranatrolite controversy. Am. Mineral., 90, 252-257. https://doi.org/10.2138/am.2005.1588
  25. Lee, Y., Lee, Y. and Seoung, D. (2010) Natrolite may not be a "soda-stone" anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite. Am. Mineral., 95(11-12), 1636-1641. https://doi.org/10.2138/am.2010.3607
  26. Lee, Y., Seoung, D., Jang, Y.-N., Bai, J. and Lee, Y. (2011a) Structural studies of NH(4)-exchanged natrolites at ambient conditions and high temperature. Am. Mineral., 96(8-9), 1308-1315. https://doi.org/10.2138/am.2011.3833
  27. Lee, Y., Seoung, D. and Lee, Y. (2011b) Natrolite is not a "soda-stone" anymore: Structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites. Am. Mineral., 96, 1718-1724. https://doi.org/10.2138/am.2011.3853
  28. Lee, Y., Seoung, D., Liu, D., Park, M.B., Hong, S.B., Chen, H., Bai, J., Kao, C.-C., Vogt, T. and Lee, Y. (2011c) In-situ dehydration studies of fully K-,Rb-, and Cs-exchanged natrolites. Am. Mineral., 96(2-3), 393-401. https://doi.org/10.2138/am.2011.3678
  29. Mannsfeld, S.C. (2009) WxDiff. Stanford Synchrotron Radiation Lightsource.
  30. Mao, H.K. and Hemley, R.J. (1996) Experimental studies of Earth deep interior: Accuracy and versatility of diamond cells. Phil. Trans. R. Soc. Lond. A, 354, 1315-1333. https://doi.org/10.1098/rsta.1996.0050
  31. Meier, W.M. (1960) The crystal structure of natrolite. Z. Kristallogr., 113, 430-444. https://doi.org/10.1524/zkri.1960.113.1-6.430
  32. Norby, P. (1997) Synchrotron powder diffraction using Imaging Plates; Crystal structure determination and Reitveld refinement. J. Appl. Crystallogr., 30, 21-30. https://doi.org/10.1107/S0021889896009995
  33. Parise, J.B., Cahill, C.L. and Lee, Y. (2000) Dynamic Powder Crystallography at Synchrotron Sources. Can. Mineral., 38, 777-800. https://doi.org/10.2113/gscanmin.38.4.777
  34. Pauling, L. (1930) The structure of some sodium and calcium aluminosilicates. Proc. Nat. Acad. Sci., 16, 453-459. https://doi.org/10.1073/pnas.16.7.453
  35. Stahl, K. (1994) Real-time powder diffraction studies of zeolite dehydration processes. Mater. Sci. Forum, 166-169(Pt. 2), 571-6.
  36. Yamazaki, A., Kamioka, K., Matsumoto, H. and Otsuka, R. (1987) Structure Refinement of K-exchanged Natrolite by Rietveld Method. Mem. School Sci. Eng., Waseda University, 118, 40-44.

Cited by

  1. Fluorapatite diagenetic differences between Cretaceous skeletal fossils of Mongolia and Korea vol.490, 2018, https://doi.org/10.1016/j.palaeo.2017.11.047
  2. Pressure Effects on the Dehydration Behavior of Natrolite vol.26, pp.3, 2013, https://doi.org/10.9727/jmsk.2013.26.3.175