DOI QR코드

DOI QR Code

Evaluation of Short-Term Prediction Skill of East Asian Summer Atmospheric Rivers

동아시아 여름철 대기의 강 단기 예측성 검증

  • Hyein Kim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yeeun Kwon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Seung-Yoon Back (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jaeyoung Hwang (School of Earth and Environmental Sciences, Seoul National University) ;
  • Seok-Woo Son (School of Earth and Environmental Sciences, Seoul National University) ;
  • HyangSuk Park (Meso-scale Meteorological Phenomenon Research Team, National Institute of Meteorological Sciences, Korean Meteorological Administration) ;
  • Eun-Jeong Cha (Meso-scale Meteorological Phenomenon Research Team, National Institute of Meteorological Sciences, Korean Meteorological Administration)
  • 김혜인 (서울대학교 지구환경과학부) ;
  • 권예은 (서울대학교 지구환경과학부) ;
  • 백승윤 (서울대학교 지구환경과학부) ;
  • 황재영 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 박향숙 (국립기상과학원 예보연구부) ;
  • 차은정 (국립기상과학원 예보연구부)
  • Received : 2024.02.02
  • Accepted : 2024.04.25
  • Published : 2024.05.31

Abstract

Atmospheric rivers (ARs) are closely related to local precipitation which can be both beneficial and destructive. Although several studies have evaluated their predictability, there is a lack of studies on East Asian ARs. This study evaluates the prediction skill of East Asian ARs in the Korean Integrated Model (KIM) for 2020~2022 summer. The spatial distribution of AR frequency in KIM is qualitatively similar to the observation but overestimated. In particular, the model errors greatly increase along the boundary of the western North Pacific subtropical high as the forecast lead time increases. When the prediction skills are quantitatively verified by computing the Anomaly Correlation Coefficient and Mean Square Skill Score, the useful prediction skill of daily AR around the Korean Peninsula is found up to 5 days. Such prediction limit is primarily set by the wind field errors with a minor contribution of moisture distribution errors. This result suggests that the improved prediction of atmospheric circulation field can improve the prediction of East Asian summer ARs and the associated precipitation.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「위험기상에 대한 분석·예보의 융합기술 고도화」(KMA2018-00121)와 2023년도 해양수산부 재원으로 해양수산과학기술진흥의 지원을 받아 수행되었습니다(20210427, 과학기술기반 해양환경영향평가 기술개발).

References

  1. Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 7528-7536, doi:10.1002/2017GL074434. 
  2. DeFlorio, M. J., D. E. Waliser, B. Guan, F. M. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 3039-3060, doi:10.1007/s00382-018-4309. 
  3. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric Rivers, Floods and the Water Resources of California. Water, 3, 445-478, https://doi.org/10.3390/w3020445. 
  4. Dhana Laskhmi, D., and A. N. V. Satyanarayana, 2020: Climatology of landfalling atmospheric Rivers and associated heavy precipitation over the Indian coastal regions. Int. J. Climatol., 40, 5616-5633, doi:10.1002/joc.6540. 
  5. Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour., 41, 117-141, doi:10.1146/annurev-environ110615-085558. 
  6. Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12514-12535, doi:10.1002/2015JD024257. 
  7. Hwang, J., H.-O. Cho, Y. Lim, S.-W. Son, E.-J. Kim, J.-O. Lim, and K.-O. Boo, 2020: Extratropical prediction skill of KMA GDAPS in January 2019. Atmosphere, 30, 115-124, doi:10.14191/Atmos.2020.30.2.115 (in Korean with English abstract). 
  8. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803. 
  9. Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0. 
  10. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292, doi:10.1007/s13143-018-0028-9. 
  11. Kataoka, T., H. Tatebe, H. Koyama, T. Mochizuki, K. Ogochi, H. Naoe, Y. Imada, H. Shiogama, M. Kimoto, and M. Watanabe, 2020: Seasonal to decadal predictions with MIROC6: Description and basic evaluation. J. Adv. Modeling Earth Syst., 12, e2019MS002035, doi:10.1029/2019MS002035. 
  12. Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017a: Atmospheric rivers over the Northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 5605-5619, doi:10.1175/JCLI-D-16-0875.1. 
  13. Kamae, Y., W. Mei, and S.-P. Xie, 2017b: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser. II, 95, 411-431, doi:10.2151/jmsj.2017-027. 
  14. Kim, G., S.-Y. Back, Y. Kwon, and S.-W. Son, 2023: Comparison of atmospheric river detection algorithms in East Asia, Atmosphere, 33, 399-411, doi:10.14191/Atmos.2023.33.4.399 (in Korean with English abstract). 
  15. Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T. Y. Gu, and Y.-H. Byun, 2021: Precipitation characteristics related to atmospheric rivers in East Asia. Int. J. Climatol., 41, E2244-E2257, doi:10.1002/joc.6843. 
  16. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245. doi:10.14191/Atmos.2018.28.3.233. 
  17. Kwon, Y., C. Park, S.-Y. Back, S.-W. Son, J. Kim, and E. J. Cha, 2022: Influence of atmospheric rivers on regional precipitation in South Korea, Atmosphere, 32, 135-148, doi:10.14191/atmos.2022.32.2.135 (in Korean with English abstract). 
  18. Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783. 
  19. Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 3259-3264, doi:10.1002/grl.50636. 
  20. Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382-390, doi:10.1016/j.jhydrol.2014.12.010. 
  21. Liang, J., and Y. Yong, 2021: Climatology of atmospheric rivers in the Asian monsoon region. Int. J. Climatol., 41, E810-E818, doi:10.1002/joc.6729. 
  22. Liu, B., J. Su, L. Ma, Y. Tang, X. Rong, J. Li, H. Chen, B. Liu, L. Hua, and R. Wu, 2021: Seasonal prediction skills in the CAMS-CSM climate forecast system. Climate Dyn., 57, 2953-2970, doi:10.1007/s00382-021-05848-z. 
  23. Moon, H., J. Kim, B. Guan, D. E. Waliser, J. Choi, T.-Y. Goo, Y. Kim, and Y.-H. Byun, 2019: The effects of atmospheric river landfalls on precipitation and temperature in Korea. Atmosphere, 29, 343-353, doi:10.14191/ATMOS.2019.29.4.343 (in Korean with English abstract). 
  24. Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric rivers over the North Pacific. J. Climate, 29, 4885-4903, doi:10.1175/JCLI-D-15-0655.1. 
  25. Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden-Julian oscillation and quasi-biennial oscillation. Npj Climate Atmos. Sci., 1, 20177, doi:10.1038/s41612-017-0008-2. 
  26. Nash, D., D. E. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 6804-6821. doi:10.1029/2017JD028130. 
  27. Nayak, M. A., G. Villarini, and D. A. Lavers, 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett., 41, 4354-4362. doi:10.1002/2014GL060299. 
  28. Nayak, M. A., and G. Villarini, 2017: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res., 53, 1144-1166, doi:10.1002/2016WR019033. 
  29. Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?-A pilot study. Geophys. Res. Lett., 19, 2401-2404, doi:10.1029/92GL02916. 
  30. Pan, M., and M. Lu, 2019: A novel atmospheric river identification algorithm. Water Resour. Res, 55, 6069-6087, doi:10.1029/2018WR024407. 
  31. Pan, M., and M. Lu, 2020: East Asia atmospheric river catalog: Annual cycle, transition mechanism, and precipitation. Geophys. Res. Lett., 47, e2020GL089477, doi:10.1029/2020GL089477. 
  32. Park, C., S.-W. Son, and H. Kim, 2021: Distinct features of atmospheric rivers in the early versus late East Asian summer monsoon and their impacts on monsoon rainfall. J. Geophys. Res. Atmos., 126, e2020JD033537, doi:10.1029/2020JD033537. 
  33. Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10387-10395. doi:10.1002/2017GL074882. 
  34. Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi.org/10.1029/2006GL026689. 
  35. Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme west coast precipitation associated with atmospheric Rivers during December 2010. Bull. Amer. Meteor. Soc ., 93, 783-790, doi: 10.1175/BAMS-D-11-00188.1. 
  36. Shu, J., A. Y. Shamseldin, and E. Weller, 2021: The impact of atmospheric rivers on rainfall in New Zealand. Sci. Rep., 11, 1-11, doi:10.1038/s41598-021-85297-0. 
  37. Son, S.-W., H. Kim, K. Song, S.-W. Kim, P. Martineau, Y.-K. Hyun, and Y. Kim, 2020: Extratropical prediction skill of the subseasonal-to-seasonal (S2S) prediction models. J. Geophys. Res. Atmos., 125, e2019-JD031273, doi:10.1029/2019JD031273. 
  38. Song, K., H. Kim, S.-W. Son, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction of GloSea5 Model: Part 2. Stratospheric sudden warming. Atmosphere, 28, 123-139, doi:10.14191/Atmos.2018.28.2.123 (in Korean with English abstract). 
  39. Tian, Y., Y. Zhao, J. Li, B. Chen, L. Deng, and D. Wen, 2024: East Asia atmospheric river forecast with a deep learning method: GAN-UNet. J. Geophys. Res. Atmos., 129, e2023JD039311, doi.org/10.1029/2023JD039311. 
  40. Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Weather Forecast, 28, 1337-1352, doi:10.1175/WAF-D-13-00025.1. 
  41. Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge- based analysis of daily precipitation over East Asia. J. Hydrometeorol., 8, 607-626. doi:10.1175/JHM583.1. 
  42. Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999-2002, doi:10.1029/94GL01710. 
  43. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.