• Title/Summary/Keyword: Time of flight method

Search Result 609, Processing Time 0.022 seconds

Real-Time Estimation of Missile Debris Predicted Impact Point and Dispersion Using Deep Neural Network (심층 신경망을 이용한 실시간 유도탄 파편 탄착점 및 분산 추정)

  • Kang, Tae Young;Park, Kuk-Kwon;Kim, Jeong-Hun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.197-204
    • /
    • 2021
  • If a failure or an abnormal maneuver occurs during the flight test of a missile, the missile is deliberately self-destructed so as not to continue the flight. At this time, debris are produced and it is important to estimate the impact area in real-time whether it is out of the safety area. In this paper, we propose a method to estimate the debris dispersion area and falling time in real-time using a Fully-Connected Neural Network (FCNN). We applied the Unscented Transform (UT) to generate a large amount of training data. UT parameters were selected by comparing with Monte-Carlo (MC) simulation to secure reliability. Also, we analyzed the performance of the proposed method by comparing the estimation result of MC.

A Study on the Design of Hardware Switching Mechanism using TCP/IP Communication (TCP/IP를 이용한 하드웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Lim, Sang-Soo;Ahn, Jong-Min;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.694-702
    • /
    • 2007
  • The SSWM(Software Switching Mechanism) of I-processor concept using non-real time in-house software simulation program is an effective method in order to develop the flight control law in desktop or HQS environment. And, this system has some advantages compare to HSWM(Hardware Switching Mechanism) such as remove the time delay effectiveness and reduce the costs of development. But, if this system loading to the OFP(Operational Flight Program), the OFP guarantee the enough throughput in order to calculate the two control law at once. Therefore, the HSWM(Hardware Switching Mechanism) of 2-processor concept is necessary. This paper addresses the concept of HSWM of the HQS-PC interface using TCP/IP(Transmission Control Protocol/Internet Protocol) communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed in order to reduce the abrupt transient response and minimize the integrator effect in pitch axis. The result of the analysis based on HQS pilot simulation using HSWM reveals that the flight control systems are switching between two computers without any problem.

A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV (UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템)

  • Kim, Jae-Wan;Yoon, Jun-Yong;Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

Telemetry Performance Enhancement Using the Time-delayed data (시간지연데이터를 이용한 원격측정 성능향상)

  • Koh, Kwang-Ryul;Lee, Sang-Bum;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • This paper proposes a telemetering method that transmits the real-time data together with the time-delayed data and that merges both data after flight test. The method can minimize the error data which occur in the communication environment affected by the multipath fading and transmit antenna pattern when telemetry data are received during the flight test. This method was applied to the design of the telemetry unit and the development of data merging program. By merging the resulting data of flight test and analyzing synchronization errors, its efficiency for the telemetry link is verified.

Ultrasonic Distance Measurement Method Based on Received Signal Model (수신 신호 모델을 이용한 초음파 거리 측정 방법)

  • Choe, Jin-Hee;Cho, Whang;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Most of present ultrasonic distance measurement technologies are based on the measurement of the TOF (: Time of Flight), the elapsed time during which the ultrasonic wave travels from its transmitter to receiver, to evaluate the distance the wave travels during that time. In this case, high distance measurement accuracy requires an accurate measurement of TOF. In order to acquire an accurate TOF, this paper proposes a method that produces the TOF by using a mathematical model of the received signal obtained from a mathematical model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical model in the sense of least-square. Experimental result shows that the effect of variation of triggering point can be decreased by implementing the proposed method.

An Efficient Transmission Scheme of Aircraft Data (항공데이터의 효율적인 전송 방식)

  • Kang, Min-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.62-68
    • /
    • 2012
  • In this paper, we propose an efficient transmission scheme for flight data. It is important to reduce amount of flight data transmitted effectively for timely transmission in airplane that the safety is very importantly recognized. Thus, this paper shows the improved technique transmitting after compressing flight data by the lossless compression technique. Because the proposed method improves the transmission speed of the flight data effectively. The processing of flight data and handling can be easily performed in the time to be restricted. The simulation results show that the proposed scheme achieves 25% data transfer gain compared to the ARINC 429 based transmission method.

Foreground Segmentation and High-Resolution Depth Map Generation Using a Time-of-Flight Depth Camera (깊이 카메라를 이용한 객체 분리 및 고해상도 깊이 맵 생성 방법)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.751-756
    • /
    • 2012
  • In this paper, we propose a foreground extraction and depth map generation method using a time-of-flight (TOF) depth camera. Although, the TOF depth camera captures the scene's depth information in real-time, it has a built-in noise and distortion. Therefore, we perform several preprocessing steps such as image enhancement, segmentation, and 3D warping, and then use the TOF depth data to generate the depth-discontinuity regions. Then, we extract the foreground object and generate the depth map as of the color image. The experimental results show that the proposed method efficiently generates the depth map even for the object boundary and textureless regions.

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

The Design and Implementation of the Collision Avoidance Warning Function in the Air Traffic Control System (항공관제 시스템에서 항공기 공중충돌 경고기능의 설계 및 구현)

  • Song, Jin-Oh;Sim, Dong-Sub;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • An aircraft collision accident is a disaster that causes great losses of inventories and lives. Though a collision avoidance warning function is provided automatically to pilots in the aircrafts by the enhancement of the aircraft capability, achieving fast decision-making to escape a collision situation is a complex and dangerous work for pilots. If an in-flight collision situation is controlled by the air traffic control system which monitors all airplanes in the air, it would be more efficient to prevent in-flight collisions because it can handle the emergency before the pilot's action. In this paper, we develop the collision avoidance warning function in the air traffic control system. Specifically, we design and implement the five stages of the collision avoidance function, and propose a visualization method which could effectively provide the operators with the trajectories and altitudes of the aircrafts in a collision situation. By developing an in-flight collision warning function in the air traffic control system that visualizes flight patterns through the state transition data of in-flight aircrafts on the flight path lines, it can effectively prevent in-flight collisions with traffic alerts. The developed function allows operators to effectively select and control the aircraft in a collision situation by providing the operators with the expected collision time, the relative distance, and the relative altitude while assessing the level of alert, and visualizing the alert information which includes the Attention-Warning-Alert phase via embodying the TCAS standard. With the developed function the air traffic control system could sense an in-flight collision situation before the pilot's decision-making moment.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.